The present study was conducted to investigate cellular and molecular features of chronic graft-versus-host disease fibroblasts (GVHD-Fbs) and to assess the effectiveness of nilotinib as a fibrosis modulator. Growth kinetics, phenotype, and differentiation of cultured skin biopsy-derived GVHD-Fbs were compared with normal fibroblasts from both a dermal cell line (n-Fbs) and healthy individuals undergoing cosmetic surgery (n-skin-Fbs). Collagen genes (COL1α1/COL1α2) and p-SMAD2 expression were assessed by real-time PCR and immunofluorescence. The in vivo effects of nilotinib on chronic GVHD (cGVHD)-affected skin were investigated by immunohistochemistry; the relationship to TGF-β plasma levels was assessed. Although the morphology, phenotype, and differentiation of cultured GVHD-Fbs were comparable to normal fibroblasts, growth was slower and senescence was reached earlier. The expression of COL1α1 and COL1α2 mRNAs was respectively 4 and 1.6 times higher in cGVHD-Fbs (P = .02); the addition of TGF-β increased n-Fbs, but not GVHD-Fbs, collagen gene expression. Compared with the baseline, the addition of 1 μM nilotinib induced 86.5% and 49% reduction in COL1α1 and COL1α2 expression in cultured GVHD-Fbs, respectively (P< .01). In vivo immunohistochemistry analysis of skin biopsy specimens from patients with cGVHD showed strong baseline staining for COL1α1 and COL1α2, which decreased sharply after 180 days of nilotinib; immunofluorescence revealed TGF-β inhibition and p-Smad2 reduction at the intracellular level. Of note, nilotinib treatment was associated with normalization of TGF-β levels both in culture supernatants and in plasma. In general, the data show that cGVHD fibroblasts promote fibrosis through abnormal collagen production induced by hyperactive TGF-β signaling. TGF-β inhibition at the intracellular and systemic level represents an essential antifibrotic mechanism of nilotinib in a clinical setting.
Nilotinib Treatment of Patients Affected by Chronic Graft-versus-Host Disease Reduces Collagen Production and Skin Fibrosis by Downmodulating the TGF-β and p-SMAD Pathway / Marinelli Busilacchi, Elena; Costantini, Andrea; Mancini, Giorgia; Tossetta, Giovanni; Olivieri, Jacopo; Poloni, Antonella; Viola, Nadia; Butini, Luca; Campanati, Anna; Goteri, Gaia; Marzioni, Daniela; Olivieri, Attilio. - In: BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION. - ISSN 1523-6536. - STAMPA. - 26:5(2020), pp. 823-834. [10.1016/j.bbmt.2020.01.014]
Nilotinib Treatment of Patients Affected by Chronic Graft-versus-Host Disease Reduces Collagen Production and Skin Fibrosis by Downmodulating the TGF-β and p-SMAD Pathway
Marinelli Busilacchi, Elena;Costantini, Andrea;Mancini, Giorgia;Tossetta, Giovanni;Poloni, Antonella;Campanati, Anna;Goteri, Gaia;Marzioni, Daniela;Olivieri, Attilio
2020-01-01
Abstract
The present study was conducted to investigate cellular and molecular features of chronic graft-versus-host disease fibroblasts (GVHD-Fbs) and to assess the effectiveness of nilotinib as a fibrosis modulator. Growth kinetics, phenotype, and differentiation of cultured skin biopsy-derived GVHD-Fbs were compared with normal fibroblasts from both a dermal cell line (n-Fbs) and healthy individuals undergoing cosmetic surgery (n-skin-Fbs). Collagen genes (COL1α1/COL1α2) and p-SMAD2 expression were assessed by real-time PCR and immunofluorescence. The in vivo effects of nilotinib on chronic GVHD (cGVHD)-affected skin were investigated by immunohistochemistry; the relationship to TGF-β plasma levels was assessed. Although the morphology, phenotype, and differentiation of cultured GVHD-Fbs were comparable to normal fibroblasts, growth was slower and senescence was reached earlier. The expression of COL1α1 and COL1α2 mRNAs was respectively 4 and 1.6 times higher in cGVHD-Fbs (P = .02); the addition of TGF-β increased n-Fbs, but not GVHD-Fbs, collagen gene expression. Compared with the baseline, the addition of 1 μM nilotinib induced 86.5% and 49% reduction in COL1α1 and COL1α2 expression in cultured GVHD-Fbs, respectively (P< .01). In vivo immunohistochemistry analysis of skin biopsy specimens from patients with cGVHD showed strong baseline staining for COL1α1 and COL1α2, which decreased sharply after 180 days of nilotinib; immunofluorescence revealed TGF-β inhibition and p-Smad2 reduction at the intracellular level. Of note, nilotinib treatment was associated with normalization of TGF-β levels both in culture supernatants and in plasma. In general, the data show that cGVHD fibroblasts promote fibrosis through abnormal collagen production induced by hyperactive TGF-β signaling. TGF-β inhibition at the intracellular and systemic level represents an essential antifibrotic mechanism of nilotinib in a clinical setting.File | Dimensione | Formato | |
---|---|---|---|
Marinelli Busilacchi E et al_BBMT_2020.pdf
accesso aperto
Descrizione: Marinelli Busilacchi e et al_BBMT 2020
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.