Vasoactive peptides constitute a heterogenous family of mediators exerting various physiological functions, mostly studied for their vasotropic effects and role as peripheral neurotransmitters/neuromodulators, mainly involved in nociceptive transmission modulation. They have been divided into vasodilatory or vasoconstrictive peptides, according to their predominant effects on vascular tone. Recent research has shown in the Central Nervous System effects as transmitters and “growth factor-like” signals. Therefore, deregulation of their signaling systems has been thought to play a role in neural cell death and in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease, since these peptides can regulate neuronal stress signaling, survival cascades, synaptic plasticity. This review considers evidence about the implication of neuropeptide systems in Alzheimer's disease while focusing mainly on calcitonin gene-related peptide-alpha. In vitro and in vivo studies have shown potential implications in its pathogenesis. It has been possibly proposed as a neuroprotective agent, considering not only its pleiotropic actions on blood vessels, neurovascular coupling, energy metabolism, but also its potential actions on neuronal, glial, and immune system stress signaling, which might also derive from its structural homology to amylin. Amylin signaling is thought to be disrupted in Alzheimer's disease, and amylin itself takes part in the composition of senile plaques. Calcitonin gene-related peptide-containing systems seem more closely related to Alzheimer's disease pathogenesis than other neuropeptidergic systems, and their regulation might represent an interesting mechanism in developing novel therapeutic approaches.

Vasoactive neuropeptides and Alzheimer's disease: a systematic review focusing on calcitonin gene-related peptide / Papiri, G.; Luzzi, S.; Marcucci, M.; Vignini, A.. - In: JOURNAL OF INTEGRATIVE NEUROSCIENCE. - ISSN 0219-6352. - ELETTRONICO. - 20:4(2021), pp. 1059-1065. [10.31083/j.jin2004107]

Vasoactive neuropeptides and Alzheimer's disease: a systematic review focusing on calcitonin gene-related peptide

Papiri G.
Primo
;
Luzzi S.;Marcucci M.;Vignini A.
Ultimo
2021-01-01

Abstract

Vasoactive peptides constitute a heterogenous family of mediators exerting various physiological functions, mostly studied for their vasotropic effects and role as peripheral neurotransmitters/neuromodulators, mainly involved in nociceptive transmission modulation. They have been divided into vasodilatory or vasoconstrictive peptides, according to their predominant effects on vascular tone. Recent research has shown in the Central Nervous System effects as transmitters and “growth factor-like” signals. Therefore, deregulation of their signaling systems has been thought to play a role in neural cell death and in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease, since these peptides can regulate neuronal stress signaling, survival cascades, synaptic plasticity. This review considers evidence about the implication of neuropeptide systems in Alzheimer's disease while focusing mainly on calcitonin gene-related peptide-alpha. In vitro and in vivo studies have shown potential implications in its pathogenesis. It has been possibly proposed as a neuroprotective agent, considering not only its pleiotropic actions on blood vessels, neurovascular coupling, energy metabolism, but also its potential actions on neuronal, glial, and immune system stress signaling, which might also derive from its structural homology to amylin. Amylin signaling is thought to be disrupted in Alzheimer's disease, and amylin itself takes part in the composition of senile plaques. Calcitonin gene-related peptide-containing systems seem more closely related to Alzheimer's disease pathogenesis than other neuropeptidergic systems, and their regulation might represent an interesting mechanism in developing novel therapeutic approaches.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/301661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact