The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius R eff = R i31/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > R eff (R < R eff ) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes.

Protein Short-Time Diffusion in a Naturally Crowded Environment / Grimaldo, M.; Lopez, H.; Beck, C.; Roosen-Runge, F.; Moulin, M.; Devos, J. M.; Laux, V.; Hartlein, M.; Da Vela, S.; Schweins, R.; Mariani, A.; Zhang, F.; Barrat, J. -L.; Oettel, M.; Forsyth, V. T.; Seydel, T.; Schreiber, F.. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 10:8(2019), pp. 1709-1715. [10.1021/acs.jpclett.9b00345]

Protein Short-Time Diffusion in a Naturally Crowded Environment

Mariani A.;
2019-01-01

Abstract

The interior of living cells is a dense and polydisperse suspension of macromolecules. Such a complex system challenges an understanding in terms of colloidal suspensions. As a fundamental test we employ neutron spectroscopy to measure the diffusion of tracer proteins (immunoglobulins) in a cell-like environment (cell lysate) with explicit control over crowding conditions. In combination with Stokesian dynamics simulation, we address protein diffusion on nanosecond time scales where hydrodynamic interactions dominate over negligible protein collisions. We successfully link the experimental results on these complex, flexible molecules with coarse-grained simulations providing a consistent understanding by colloid theories. Both experiments and simulations show that tracers in polydisperse solutions close to the effective particle radius R eff = R i31/3 diffuse approximately as if the suspension was monodisperse. The simulations further show that macromolecules of sizes R > R eff (R < R eff ) are slowed more (less) effectively even at nanosecond time scales, which is highly relevant for a quantitative understanding of cellular processes.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/300147
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact