Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well‐known driver mutations, JAK2, MPL and CALR, determining constitutive activation of JAK‐STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co‐occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in diseasemodifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.

Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications / Morsia, E.; Torre, E.; Poloni, A.; Olivieri, A.; Rupoli, S.. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 23:9(2022), p. 4573. [10.3390/ijms23094573]

Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications

Morsia E.;Torre E.;Poloni A.;Olivieri A.;Rupoli S.
2022-01-01

Abstract

Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well‐known driver mutations, JAK2, MPL and CALR, determining constitutive activation of JAK‐STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co‐occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in diseasemodifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/300116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact