Streptomyces griseus, a bacterium producing antibacterial drugs and featuring possible application in phytoremediation, expresses two metal-dependent superoxide dismutase (SOD) enzymes, containing either Fe(II) or Ni(II) in their active site. In particular, the alternative expression of the two proteins occurs in a metal-dependent mode, with the Fe(II)-enzyme gene (sodF) repressed at high intracellular Ni(II) concentrations by a two-component system (TCS). This complex involves two proteins, namely SgSrnR and SgSrnQ, which represent the transcriptional regulator and the Ni(II) sensor of the system, respectively. SgSrnR belongs to the ArsR/SmtB family of metal-dependent transcription factors; in the apo-form and in the absence of SgSrnQ, it can bind the DNA operator of sodF, upregulating gene transcription. According to a recently proposed hypothesis, Ni(II) binding to SgSrnQ would promote its interaction with SgSrnR, causing the release of the complex from DNA and the consequent downregulation of the sodF expression. SgSrnQ is predicted to be highly disordered, thus the understanding, at the molecular level, of how the SgSrnR/SgSrnQ TCS specifically responds to Ni(II) requires the knowledge of the structural, dynamic, and functional features of SgSrnR. These were investigated synergistically in this work using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, atomistic molecular dynamics calculations, isothermal titration calorimetry, and in silico molecular docking. The results reveal that the homodimeric apo-SgSrnR binds to its operator in a two-step process that involves the more rigid globular portion of the protein and leaves its largely disordered regions available to possibly interact with the disordered SgSrnQ in a Ni-dependent process.

Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression / Mazzei, L.; Musiani, F.; Zerko, S.; Kozminski, W.; Cianci, M.; Beniamino, Y.; Ciurli, S.; Zambelli, B.. - In: METALLOMICS. - ISSN 1756-5901. - ELETTRONICO. - 13:12(2021). [10.1093/mtomcs/mfab069]

Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression

Cianci M.;
2021-01-01

Abstract

Streptomyces griseus, a bacterium producing antibacterial drugs and featuring possible application in phytoremediation, expresses two metal-dependent superoxide dismutase (SOD) enzymes, containing either Fe(II) or Ni(II) in their active site. In particular, the alternative expression of the two proteins occurs in a metal-dependent mode, with the Fe(II)-enzyme gene (sodF) repressed at high intracellular Ni(II) concentrations by a two-component system (TCS). This complex involves two proteins, namely SgSrnR and SgSrnQ, which represent the transcriptional regulator and the Ni(II) sensor of the system, respectively. SgSrnR belongs to the ArsR/SmtB family of metal-dependent transcription factors; in the apo-form and in the absence of SgSrnQ, it can bind the DNA operator of sodF, upregulating gene transcription. According to a recently proposed hypothesis, Ni(II) binding to SgSrnQ would promote its interaction with SgSrnR, causing the release of the complex from DNA and the consequent downregulation of the sodF expression. SgSrnQ is predicted to be highly disordered, thus the understanding, at the molecular level, of how the SgSrnR/SgSrnQ TCS specifically responds to Ni(II) requires the knowledge of the structural, dynamic, and functional features of SgSrnR. These were investigated synergistically in this work using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, atomistic molecular dynamics calculations, isothermal titration calorimetry, and in silico molecular docking. The results reveal that the homodimeric apo-SgSrnR binds to its operator in a two-step process that involves the more rigid globular portion of the protein and leaves its largely disordered regions available to possibly interact with the disordered SgSrnQ in a Ni-dependent process.
2021
File in questo prodotto:
File Dimensione Formato  
mfab069.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mazzei_structure-dynamics-function_2021_post-print.pdf

Open Access dal 28/11/2022

Descrizione: This is a pre-copyedited, author-produced version of an article accepted for publication in Metallomics following peer review. The version of record Luca Mazzei, Francesco Musiani, Szymon Żerko, Wiktor Koźminski, Michele Cianci, Ylenia Beniamino, Stefano Ciurli, Barbara Zambelli, Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression, Metallomics, Volume 13, Issue 12, December 2021, mfab069, https://doi.org/10.1093/mtomcs/mfab069 is available online at: https://doi.org/10.1093/mtomcs/mfab069.
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell’editore (allegare)
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/300099
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact