Previous studies have shown both anti-estrogenic and anti-androgenic activities of 2-isopropylthioxanthone (2-ITX), a well known food contaminant, in in vitro assays. However, no data are available on the anti-estrogenic potentials and risks of 2-ITX in aquatic organisms. This work evaluated the potential endocrine disrupting effects of 2-ITX at the level of estrogen receptor (ER) signaling cascade using juvenile goldfish (Carassius auratus) as model. Firstly, we investigated the ligand binding efficiency of 2-ITX to the ligand binding domains (LBD) of goldfish ER subtypes using a molecular docking approach. Secondly, we assessed the effects of 2-ITX on E2-induced hepatic expression of ERα1, ERβ1, ERβ2, and vitellogenin (VTG) in vivo. Crosstalk between ER-VTG and aryl hydrocarbon receptor 2 (AhR2)-cytochrome P4501A (CYP1A) was also investigated. Fish were injected with increasing doses of 2-ITX ranging from 2 to 10 µg/g BW, and results were compared to the effect of tamoxifen, a well-known ER modulator. We observed that compared to ERβ, the interaction potentials of 2-ITX to goldfish ERα1 LBD was more stable in the inactive receptor conformation. The in silico docking simulation analysis also revealed that 2-ITX acted as agonist for the goldfish AhR2 LBDs suggesting the ability of this compound to activate the cross-talk between the ERα- and AhR-signaling pathways. In vivo experiments confirm in silico simulation predictions demonstrating that 2-ITX reduced the estrogenicity of E2 at both transcriptional and post-transcriptional levels, indicating a clear anti-estrogenic effect. Co-exposure of E2 and 2-ITX also resulted in a significant decrease of CYP1A gene expression with respect to 2-ITX alone. Results from these studies collectively revealed that the antiestrogenic property of 2-ITX can be ascribed to a combination of effects on multiple signaling pathways suggesting the potential for this environmental contaminant to affect the hormonal control of reproductive processes in fish.
In silico prediction and in vivo analysis of antiestrogenic potential of 2-isopropylthioxanthone (2-ITX) in juvenile goldfish (Carassius auratus) / Cocci, P.; Mozzicafreddo, M.; Angeletti, M.; Mosconi, G.; Palermo, F. A.. - In: ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY. - ISSN 0147-6513. - 133:(2016), pp. 202-210. [10.1016/j.ecoenv.2016.07.021]
In silico prediction and in vivo analysis of antiestrogenic potential of 2-isopropylthioxanthone (2-ITX) in juvenile goldfish (Carassius auratus)
Mozzicafreddo M.;
2016-01-01
Abstract
Previous studies have shown both anti-estrogenic and anti-androgenic activities of 2-isopropylthioxanthone (2-ITX), a well known food contaminant, in in vitro assays. However, no data are available on the anti-estrogenic potentials and risks of 2-ITX in aquatic organisms. This work evaluated the potential endocrine disrupting effects of 2-ITX at the level of estrogen receptor (ER) signaling cascade using juvenile goldfish (Carassius auratus) as model. Firstly, we investigated the ligand binding efficiency of 2-ITX to the ligand binding domains (LBD) of goldfish ER subtypes using a molecular docking approach. Secondly, we assessed the effects of 2-ITX on E2-induced hepatic expression of ERα1, ERβ1, ERβ2, and vitellogenin (VTG) in vivo. Crosstalk between ER-VTG and aryl hydrocarbon receptor 2 (AhR2)-cytochrome P4501A (CYP1A) was also investigated. Fish were injected with increasing doses of 2-ITX ranging from 2 to 10 µg/g BW, and results were compared to the effect of tamoxifen, a well-known ER modulator. We observed that compared to ERβ, the interaction potentials of 2-ITX to goldfish ERα1 LBD was more stable in the inactive receptor conformation. The in silico docking simulation analysis also revealed that 2-ITX acted as agonist for the goldfish AhR2 LBDs suggesting the ability of this compound to activate the cross-talk between the ERα- and AhR-signaling pathways. In vivo experiments confirm in silico simulation predictions demonstrating that 2-ITX reduced the estrogenicity of E2 at both transcriptional and post-transcriptional levels, indicating a clear anti-estrogenic effect. Co-exposure of E2 and 2-ITX also resulted in a significant decrease of CYP1A gene expression with respect to 2-ITX alone. Results from these studies collectively revealed that the antiestrogenic property of 2-ITX can be ascribed to a combination of effects on multiple signaling pathways suggesting the potential for this environmental contaminant to affect the hormonal control of reproductive processes in fish.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.