This PhD thesis deals with biomaterial for tissue engineering applications produced by additive manufacturing technologies. The research was carried out focusing on biomaterials based on metal, polymer, ceramic and composite, aiming at combining biomaterials with innovative additive manufacturing technologies, geometries and surface functionalization to create 3D scaffolds suitable for the specific needs of tissue engineering. 3D scaffolds in titanium alloys (Ti6Al4V and Ti48Al2Cr2Nb) with lattice geometry were produced by electron beam powder bed fusion (EB-PBF). Ti6Al4V lattice scaffolds were fabricated starting from industrial EB-PBF process based on cost and waste reduction (reused powder) in order to overcome issues connected to the high costs of preclinical studies. On the other hand, the biological response of Ti-48Al-2Cr-2Nb (γ-TiAl alloy) in terms of adhesion, short-term viability and proliferation of NIH-3T3 cells on lattice scaffold for the first time has been studied to overcome critical issues associated with the presence of potentially cytotoxic elements. In addition, scaffolds in stainless steels (316L and duplex) with graded lattice geometry were manufactured by laser powder bed fusion (L-PBF). 316L lattice scaffolds were graded for programming mechanical and biological behavior for short-term clinical applications. The most promising graded lattice geometry was also produced in duplex steels to compare for the first time the in vitro behavior of duplex steel with 316L stainless steel additively manufactured lattice scaffold. High-definition bone biomimetic scaffolds were geometrically optimized and produced by vat photopolymerization by using a biocompatible polymer developed for medical applications requiring limited time contact with the body. The research work was focused on the studying of the influence of 3D bone-like structure on biomechanical performances of scaffold. Correlation between morphometry, microstructure, mechanical properties, sintering temperature and time at peak temperature were investigated in an innovative way, in order to find the best sintering conditions for the biphasic calcium phosphate (tricalcium phosphate/hydroxyapatite 30 wt.%) composites grafted in severe alveolar bone defects The know-how on resorbable polycaprolactone/hydroxyapatite (PCL/HA, 70/30 wt.%) scaffolds produced by L-PBF technology was extended to geometrically complex lattice structures and micro porous struts. Results from the above issues dealt with this research work make the approach based on biomaterial → additive manufacturing technology → geometry optimization → surface functionalization → advanced characterization in vitro very promising for patient-customized solutions in tissue engineering applications.
Questa tesi di dottorato si occupa di biomateriali per applicazioni di ingegneria dei tessuti prodotti con tecnologie di costruzione additiva. La ricerca è stata condotta concentrandosi su biomateriali a base di metalli, polimeri, ceramici e compositi, con l'obiettivo di combinare i biomateriali con tecnologie innovative di costruzione additiva, geometrie e funzionalizzazione della superficie per creare scaffold 3D adatti ad esigenze specifiche dell'ingegneria dei tessuti. Gli scaffold 3D in leghe di titanio (Ti6Al4V e Ti48Al2Cr2Nb) con geometria reticolare sono stati prodotti mediante fusione a letto di polvere con fascio elettronico (EB-PBF). Le impalcature a reticolo Ti6Al4V sono state fabbricate a partire da un processo industriale EB-PBF basato sulla riduzione dei costi e dei rifiuti (polvere riutilizzata) al fine di superare i problemi legati agli alti costi degli studi preclinici. D'altra parte, la risposta biologica di Ti-48Al-2Cr-2Nb (lega γ-TiAl) in termini di adesione, vitalità a breve termine e proliferazione di cellule NIH-3T3 su scaffold reticolari è stata studiata per la prima volta per superare le criticità legate alla presenza di elementi potenzialmente citotossici. Inoltre, gli scaffold in acciai inossidabili (316L e duplex) con geometria reticolare graduata sono stati fabbricati mediante fusione a letto di polvere con laser (L-PBF). Gli scaffold a reticolo in 316L sono stati graduati per programmare il comportamento meccanico e biologico per applicazioni cliniche a breve termine. La geometria reticolare graduata più promettente è stata prodotta anche in acciaio duplex per confrontare per la prima volta il comportamento in vitro di acciaio duplex e acciaio inossidabile 316L in strutture reticolari prodotte additivamente. Scaffold biomimetici ossei ad alta definizione sono stati ottimizzati geometricamente e prodotti mediante vat photopolymerizatio, utilizzando un polimero biocompatibile sviluppato per applicazioni mediche che richiedono un contatto limitato nel tempo con il corpo. Il lavoro di ricerca si è concentrato sullo studio dell'influenza di una struttura 3D simile all'osso sulle prestazioni biomeccaniche dello scaffold. La correlazione tra morfometria, microstruttura, proprietà meccaniche, temperatura di sinterizzazione e tempo alla temperatura di picco è stata studiata in modo innovativo, al fine di trovare le migliori condizioni di sinterizzazione per i compositi bifasici di fosfato di calcio (fosfato tricalcico/idrossiapatite 30 wt.%) innestati in gravi difetti ossei alveolari Il know-how sulle impalcature riassorbibili in policaprolattone/idrossiapatite (PCL/HA, 70/30 wt.%) prodotte con la tecnologia L-PBF è stato esteso a strutture reticolari geometricamente complesse e a strut microporosi. I risultati delle questioni di cui sopra, trattate in questo lavoro di ricerca, rendono l'approccio basato su biomateriale → tecnologia di produzione additiva → ottimizzazione della geometria → funzionalizzazione della superficie → caratterizzazione avanzata in vitro molto promettente per soluzioni personalizzate per il paziente nelle applicazioni di ingegneria tissutale.
Biomaterials for Tissue Engineering by Additive Manufacturing / Gatto, MARIA LAURA. - (2022 May 27).
Biomaterials for Tissue Engineering by Additive Manufacturing
GATTO, MARIA LAURA
2022-05-27
Abstract
This PhD thesis deals with biomaterial for tissue engineering applications produced by additive manufacturing technologies. The research was carried out focusing on biomaterials based on metal, polymer, ceramic and composite, aiming at combining biomaterials with innovative additive manufacturing technologies, geometries and surface functionalization to create 3D scaffolds suitable for the specific needs of tissue engineering. 3D scaffolds in titanium alloys (Ti6Al4V and Ti48Al2Cr2Nb) with lattice geometry were produced by electron beam powder bed fusion (EB-PBF). Ti6Al4V lattice scaffolds were fabricated starting from industrial EB-PBF process based on cost and waste reduction (reused powder) in order to overcome issues connected to the high costs of preclinical studies. On the other hand, the biological response of Ti-48Al-2Cr-2Nb (γ-TiAl alloy) in terms of adhesion, short-term viability and proliferation of NIH-3T3 cells on lattice scaffold for the first time has been studied to overcome critical issues associated with the presence of potentially cytotoxic elements. In addition, scaffolds in stainless steels (316L and duplex) with graded lattice geometry were manufactured by laser powder bed fusion (L-PBF). 316L lattice scaffolds were graded for programming mechanical and biological behavior for short-term clinical applications. The most promising graded lattice geometry was also produced in duplex steels to compare for the first time the in vitro behavior of duplex steel with 316L stainless steel additively manufactured lattice scaffold. High-definition bone biomimetic scaffolds were geometrically optimized and produced by vat photopolymerization by using a biocompatible polymer developed for medical applications requiring limited time contact with the body. The research work was focused on the studying of the influence of 3D bone-like structure on biomechanical performances of scaffold. Correlation between morphometry, microstructure, mechanical properties, sintering temperature and time at peak temperature were investigated in an innovative way, in order to find the best sintering conditions for the biphasic calcium phosphate (tricalcium phosphate/hydroxyapatite 30 wt.%) composites grafted in severe alveolar bone defects The know-how on resorbable polycaprolactone/hydroxyapatite (PCL/HA, 70/30 wt.%) scaffolds produced by L-PBF technology was extended to geometrically complex lattice structures and micro porous struts. Results from the above issues dealt with this research work make the approach based on biomaterial → additive manufacturing technology → geometry optimization → surface functionalization → advanced characterization in vitro very promising for patient-customized solutions in tissue engineering applications.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Gatto.pdf
Open Access dal 28/11/2023
Descrizione: Tesi_Gatto
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
6.79 MB
Formato
Adobe PDF
|
6.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.