The aim of this work is to simulate the charge transport in a monolayer graphene on a substrate. This requires the inclusion of the scatterings of the charge carriers with the impurities and the phonons of the substrate, besides the interaction mechanisms already present in the graphene layer. As physical model, the semiclassical Boltzmann equation will be assumed. Two approaches will be used for the simulations: a numerical scheme based on the Discontinuous Galerkin method for finding deterministic (non stochastic) solutions and a new Direct Monte Carlo Simulation formulated in Romano et al. (J Comput Phys 302:267–284, 2015) in order to deal in the appropriate way with the Pauli exclusion principle for degenerate Fermi gases. A cross validation of the deterministic and stochastic solutions shows the robustness and accuracy of both the approaches.

Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate / Coco, M.; Majorana, A.; Romano, V.. - In: RICERCHE DI MATEMATICA. - ISSN 0035-5038. - 66:1(2017), pp. 201-220. [10.1007/s11587-016-0298-4]

Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate

Coco M.
Primo
;
2017-01-01

Abstract

The aim of this work is to simulate the charge transport in a monolayer graphene on a substrate. This requires the inclusion of the scatterings of the charge carriers with the impurities and the phonons of the substrate, besides the interaction mechanisms already present in the graphene layer. As physical model, the semiclassical Boltzmann equation will be assumed. Two approaches will be used for the simulations: a numerical scheme based on the Discontinuous Galerkin method for finding deterministic (non stochastic) solutions and a new Direct Monte Carlo Simulation formulated in Romano et al. (J Comput Phys 302:267–284, 2015) in order to deal in the appropriate way with the Pauli exclusion principle for degenerate Fermi gases. A cross validation of the deterministic and stochastic solutions shows the robustness and accuracy of both the approaches.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/299711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact