In this paper we study a quasilinear boundary value problem of Neumann type with discontinuous terms. In particular we consider a problem in which the p-Laplacian is involved. In order to prove the existence of solutions we replace this problem with a multivalued approximation of it and, using a variational approach for locally Lipschitz functionals, we prove two existence results for it.

A quasilinear Neumann problem with discontinuous nonlinearirty / Papalini, Francesca. - In: MATHEMATISCHE NACHRICHTEN. - ISSN 0025-584X. - STAMPA. - 250:(2003), pp. 82-97. [10.1002/mana.200310023]

A quasilinear Neumann problem with discontinuous nonlinearirty

PAPALINI, Francesca
2003-01-01

Abstract

In this paper we study a quasilinear boundary value problem of Neumann type with discontinuous terms. In particular we consider a problem in which the p-Laplacian is involved. In order to prove the existence of solutions we replace this problem with a multivalued approximation of it and, using a variational approach for locally Lipschitz functionals, we prove two existence results for it.
2003
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/29970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact