In present day oceans, diatoms are abundant and diverse primary producers distinguished by their silica shells. By the Cretaceous Period, large spherical diatoms with highly silicified frustules thrived in surface oceans, only later to be joined by species with elongated and thinner frustules, with lower SiO2 content. But how has the synergic action of selective pressures acted on the evolution of morphologically different frustules? The ecological importance of diatoms, also in the perspective of future oceanic predictions, and frustule promising exploitation as emerging biomaterial drive the studies on the topic. To answer the question, both the involvement of two major selective pressures (e.g. oceanic Si decline and predation) in diatom radiation and frustule adaptative role were investigated. Diatoms were acclimated to reconstructed paleoenvironments mimicking Mesozoic concentration of nutrients in the presence of decreasing Si content. Moreover, mono- and mixed cultures of diatoms were exposed to the presence of predators. Data confirmed that both selective pressures have acted on the evolution of different frustule morphologies leading to more competitive shapes. The adaptative role of silica shells in controlling buoyancy was confirmed since sinking capacity of diatoms was related to frustule density and not to cellular shape and size. A direct relation between sinking capacity and growing light intensity was observed, independently from silicification, suggesting an energy dependent buoyancy control at cellular level. Finally, thanks to the characterization of frustules, Chaetoceros muelleri was found as a promising species for frustule exploitation due to its high surface area and relative high presence of basic sites, important for subsequent functionalization. The acidic removal of the organic matter was a more sustainable option to obtain frustules with 4 kg of equivalent CO2 released compared to 20 kg released by the oxidation method.
Negli oceani attuali le diatomee sono abbondanti e diversificati produttori primari circondate da gusci di silice chiamati frustuli. Nel Cretaceo, diatomee sferiche con frustuli altamente silicizzati prosperavano negli oceani, solo in seguito affiancate da specie con frustuli allungati e più sottili, con un contenuto di SiO2 inferiore. Ma come ha agito l'azione sinergica delle pressioni selettive sull'evoluzione delle diverse morfologie di frustulo? L'importanza ecologica delle diatomee e lo sfruttamento dei frustuli come promettenti biomateriali guidano gli studi sull'argomento. Il ruolo di due pressioni selettive (declino di Si oceanica e predazione) sulla radiazione delle diatomee e il ruolo adattativo del frustulo sono stati studiati. Diatomee morfologicamente diverse sono state acclimatate a paleoambienti ricostruiti imitando la concentrazione mesozoica di nutrienti in presenza di regimi decrescenti di Si. Inoltre, colture monospecifiche e miste di diatomee morfologicamente diverse sono state esposte alla presenza di predatori. I dati confermano che entrambe le pressioni selettive hanno agito sull'evoluzione morfologica dei diversi frustuli, portando a forme più competitive. Il ruolo adattativo del frustulo nel controllo del galleggiamento è stato confermato dato che è stata verificata la correlazione tra capacità di affondamento delle diatomee e densità del frustulo, e non rispetto a forma e alle dimensioni cellulari. A livello cellulare una maggiore capacità di galleggiamento dipende dall'energia disponibile ed è indipendente dalla silicizzazione. Infine, la caratterizzazione dei frustuli con la prospettiva di sfruttarli come biomateriale ha dimostrato che Chaetoceros muelleri è una specie promettente grazie alla presenza relativamente elevata di siti basici, importanti per la successiva funzionalizzazione. La rimozione con acidi della materia organica è risultata essere un'opzione più sostenibile per ottenere frustuli rispetto al metodo dell’ossidazione.
The evolution of morphology in diatoms / Petrucciani, Alessandra. - (2022 Jun 08).
The evolution of morphology in diatoms
PETRUCCIANI, ALESSANDRA
2022-06-08
Abstract
In present day oceans, diatoms are abundant and diverse primary producers distinguished by their silica shells. By the Cretaceous Period, large spherical diatoms with highly silicified frustules thrived in surface oceans, only later to be joined by species with elongated and thinner frustules, with lower SiO2 content. But how has the synergic action of selective pressures acted on the evolution of morphologically different frustules? The ecological importance of diatoms, also in the perspective of future oceanic predictions, and frustule promising exploitation as emerging biomaterial drive the studies on the topic. To answer the question, both the involvement of two major selective pressures (e.g. oceanic Si decline and predation) in diatom radiation and frustule adaptative role were investigated. Diatoms were acclimated to reconstructed paleoenvironments mimicking Mesozoic concentration of nutrients in the presence of decreasing Si content. Moreover, mono- and mixed cultures of diatoms were exposed to the presence of predators. Data confirmed that both selective pressures have acted on the evolution of different frustule morphologies leading to more competitive shapes. The adaptative role of silica shells in controlling buoyancy was confirmed since sinking capacity of diatoms was related to frustule density and not to cellular shape and size. A direct relation between sinking capacity and growing light intensity was observed, independently from silicification, suggesting an energy dependent buoyancy control at cellular level. Finally, thanks to the characterization of frustules, Chaetoceros muelleri was found as a promising species for frustule exploitation due to its high surface area and relative high presence of basic sites, important for subsequent functionalization. The acidic removal of the organic matter was a more sustainable option to obtain frustules with 4 kg of equivalent CO2 released compared to 20 kg released by the oxidation method.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Petrucciani.pdf
Open Access dal 09/12/2023
Descrizione: Tesi_Petrucciani
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
10.43 MB
Formato
Adobe PDF
|
10.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.