The work of traditional cyclones is based on the separation of solid particles using only the centrifugal forces. Therefore, they do not demonstrate high gas-cleaning efficiency, particularly in the cases where gas flows are polluted with fine solid particles (about 20 µm in diameter). The key feature of a new-generation multi-channel cyclone separator’s structure is that its symmetrical upgraded curved elements, with openings cut with their plates bent outwards, make channels for the continuous movement of the gas flows from the inflow opening to the central axis. The smoke flue of the vertical gas outflow is located near the cover of the separating chamber. The present work is aimed at studying the applicability of two various viscosity models and their modified versions to simulate aerodynamic processes in an innovative design for a multi-channel cyclone separator with a single inflow, using the computational fluid dynamics. The research results obtained in the numerical simulation are compared to the experimental results obtained using a physical model. The main purpose of this study is to provide information on how the new design for the multi-channel cyclone affects the distribution of gas flow in the cyclone’s channels. The modified viscosity models, k-ε and k-ω, and computational meshes with various levels of detailed elaboration were analyzed. The developed numerical models of a single-inlet multi-channel cyclone separator allow the researchers to describe its advantages and possible methods of improving its new structure. The developed models can be used for simulating the fluid cleaning phenomenon in the improved fourth-channel cyclone separator and to optimize the whole research process.

The numerical modeling of gas movement in a single inlet new generation multi-channel cyclone separator / Chlebnikovas, A.; Kilikevicius, A.; Selech, J.; Matijosius, J.; Kilikeviciene, K.; Vainorius, D.; Passerini, G.; Marcinkiewicz, J.. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 14:23(2021), p. 8092. [10.3390/en14238092]

The numerical modeling of gas movement in a single inlet new generation multi-channel cyclone separator

Passerini G.;
2021-01-01

Abstract

The work of traditional cyclones is based on the separation of solid particles using only the centrifugal forces. Therefore, they do not demonstrate high gas-cleaning efficiency, particularly in the cases where gas flows are polluted with fine solid particles (about 20 µm in diameter). The key feature of a new-generation multi-channel cyclone separator’s structure is that its symmetrical upgraded curved elements, with openings cut with their plates bent outwards, make channels for the continuous movement of the gas flows from the inflow opening to the central axis. The smoke flue of the vertical gas outflow is located near the cover of the separating chamber. The present work is aimed at studying the applicability of two various viscosity models and their modified versions to simulate aerodynamic processes in an innovative design for a multi-channel cyclone separator with a single inflow, using the computational fluid dynamics. The research results obtained in the numerical simulation are compared to the experimental results obtained using a physical model. The main purpose of this study is to provide information on how the new design for the multi-channel cyclone affects the distribution of gas flow in the cyclone’s channels. The modified viscosity models, k-ε and k-ω, and computational meshes with various levels of detailed elaboration were analyzed. The developed numerical models of a single-inlet multi-channel cyclone separator allow the researchers to describe its advantages and possible methods of improving its new structure. The developed models can be used for simulating the fluid cleaning phenomenon in the improved fourth-channel cyclone separator and to optimize the whole research process.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/299178
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact