Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e., the human gut microbiota, adheres to a surface to form stable biofilms. Two electrospun structures made of natural, i.e., gelatin, and synthetic, i.e., polycaprolactone, polymers were used to study their ability to both promote the adhesion of the human gut microbiota and support microbial growth in vitro. Due to the different wettabilities of the two surfaces, a mucin coating was also added to the structures to decouple the effect of bulk and surface properties on microbial adhesion. The developed biofilm was quantified and monitored using live/dead imaging and scanning electron microscopy. The results indicated that the electrospun gelatin structure without the mucin coating was the optimal choice for developing a 3D in vitro model of the human gut microbiota.

Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures / Biagini, F.; Calvigioni, M.; De Maria, C.; Magliaro, C.; Montemurro, F.; Mazzantini, D.; Celandroni, F.; Mattioli-Belmonte, M.; Ghelardi, E.; Vozzi, G.. - In: BIOENGINEERING. - ISSN 2306-5354. - STAMPA. - 9:3(2022), p. 96. [10.3390/bioengineering9030096]

Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures

Mattioli-Belmonte M.;
2022-01-01

Abstract

Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e., the human gut microbiota, adheres to a surface to form stable biofilms. Two electrospun structures made of natural, i.e., gelatin, and synthetic, i.e., polycaprolactone, polymers were used to study their ability to both promote the adhesion of the human gut microbiota and support microbial growth in vitro. Due to the different wettabilities of the two surfaces, a mucin coating was also added to the structures to decouple the effect of bulk and surface properties on microbial adhesion. The developed biofilm was quantified and monitored using live/dead imaging and scanning electron microscopy. The results indicated that the electrospun gelatin structure without the mucin coating was the optimal choice for developing a 3D in vitro model of the human gut microbiota.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/299154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact