The emerging scenario designed by digital technologies connected to Industry 4.0 is pushing towards increasingly sustainable companies. Access to the multiple benefits of digitalization (such as increased productivity, flexibility, efficiency, quality, lower consumption of resources, and the improvement of worker safety) is possible by purchasing new-generation machinery. However, thanks to smart retrofitting processes, companies can extend the shelf life of machinery without replacing it entirely. This work aims to present a framework to assess the sustainability of implementing a smart retrofitting process in old machines as an alternative to replacement from a triple bottom line (economic, environmental, and social) perspective. Due to the multidimensional and multidisciplinary variables that the proposed framework must consider, a multicriteria decision-making process is developed to identify the best transition solution from Industry 3.0 to 4.0. Then, we analyze a case study in which, thanks to the previously proposed methodology, two types of smart retrofitting on a column drill are compared with three replacement options for the same machine tool. In conclusion, the case study shows that retrofitting in the context of Industry 4.0 (or smart retrofitting), despite its high acquisition cost, is the best solution in terms of sustainability, and that this is because the smart retrofitting solution not only positively influences all parameters of digitization but also has a strong impact on the safety criterion.

Machine tool transition from industry 3.0 to 4.0: A comparison between old machine retrofitting and the purchase of new machines from a triple bottom line perspective / Ilari, S.; Di Carlo, F.; Ciarapica, F. E.; Bevilacqua, M.. - In: SUSTAINABILITY. - ISSN 2071-1050. - ELETTRONICO. - 13:18(2021), p. 10441. [10.3390/su131810441]

Machine tool transition from industry 3.0 to 4.0: A comparison between old machine retrofitting and the purchase of new machines from a triple bottom line perspective

Ilari S.
Primo
;
Di Carlo F.
Secondo
;
Ciarapica F. E.
Penultimo
;
Bevilacqua M.
Ultimo
2021-01-01

Abstract

The emerging scenario designed by digital technologies connected to Industry 4.0 is pushing towards increasingly sustainable companies. Access to the multiple benefits of digitalization (such as increased productivity, flexibility, efficiency, quality, lower consumption of resources, and the improvement of worker safety) is possible by purchasing new-generation machinery. However, thanks to smart retrofitting processes, companies can extend the shelf life of machinery without replacing it entirely. This work aims to present a framework to assess the sustainability of implementing a smart retrofitting process in old machines as an alternative to replacement from a triple bottom line (economic, environmental, and social) perspective. Due to the multidimensional and multidisciplinary variables that the proposed framework must consider, a multicriteria decision-making process is developed to identify the best transition solution from Industry 3.0 to 4.0. Then, we analyze a case study in which, thanks to the previously proposed methodology, two types of smart retrofitting on a column drill are compared with three replacement options for the same machine tool. In conclusion, the case study shows that retrofitting in the context of Industry 4.0 (or smart retrofitting), despite its high acquisition cost, is the best solution in terms of sustainability, and that this is because the smart retrofitting solution not only positively influences all parameters of digitization but also has a strong impact on the safety criterion.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/298799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact