In this paper we study the hardness of the syndrome decoding problem over finite rings endowed with the Lee metric. We first prove that the decisional version of the problem is NP-complete, by a reduction from the 3-dimensional matching problem. Then, we study the complexity of solving the problem, by translating the best known solvers in the Hamming metric over finite fields to the Lee metric over finite rings, as well as proposing some novel solutions. For the analyzed algorithms, we assess the computational complexity in the asymptotic regime and compare it to the corresponding algorithms in the Hamming metric.

On the hardness of the Lee syndrome decoding problem / Weger, Violetta; Khathuria, Karan; Horlemann, Anna-Lena; Battaglioni, Massimo; Santini, Paolo; Persichetti, Edoardo. - In: ADVANCES IN MATHEMATICS OF COMMUNICATIONS. - ISSN 1930-5346. - ELETTRONICO. - 18:1(2024), pp. 233-266. [10.3934/amc.2022029]

On the hardness of the Lee syndrome decoding problem

Battaglioni, Massimo;Santini, Paolo;Persichetti, Edoardo
2024-01-01

Abstract

In this paper we study the hardness of the syndrome decoding problem over finite rings endowed with the Lee metric. We first prove that the decisional version of the problem is NP-complete, by a reduction from the 3-dimensional matching problem. Then, we study the complexity of solving the problem, by translating the best known solvers in the Hamming metric over finite fields to the Lee metric over finite rings, as well as proposing some novel solutions. For the analyzed algorithms, we assess the computational complexity in the asymptotic regime and compare it to the corresponding algorithms in the Hamming metric.
2024
File in questo prodotto:
File Dimensione Formato  
10.3934_amc.2022029.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 647.99 kB
Formato Adobe PDF
647.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
On_the_hardness_of_SDP_for_codes_over_finite_rings_in_the_Lee_metric__AMC_.pdf

accesso aperto

Descrizione: This article has been published in a revised form in Advances in Mathematics of Communications 10.3934/amc.2022029. This version is free to download for private research and study only. Not for redistribution, re-sale or use in derivative works.
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell’editore
Dimensione 530.83 kB
Formato Adobe PDF
530.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/298763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 10
social impact