The formation of a heterogeneous oxidized layer, also called scale, on metallic surfaces is widely recognized as a rapid manufacturing event for metals and their alloys. Partial or total removal of the scale represents a mandatory integrated step for the industrial fabrication processes of medical devices. For biodegradable metals, acid pickling has already been reported as a preliminary surface preparation given further processes, such as electropolishing. Unfortunately, biodegradable medical prototypes presented discrepancies concerning acid pickling studies based on samples with less complex geometry (e.g., non-uniform scale removal and rougher surface). Indeed, this translational knowledge lacks a detailed investigation on this process, deep characterization of treated surfaces properties, as well as a comprehensive discussion of the involved mechanisms. In this study, the effects of different acidic media (HCl, HNO3, H3PO4, CH3COOH, H2SO4 and HF), maintained at different temperatures (21 and 60 °C) for various exposition time (15–240 s), on the chemical composition and surface properties of a Fe–13Mn-1.2C biodegradable alloy were investigated. Changes in mass loss, morphology and wettability evidenced the combined effect of temperature and time for all conditions. Pickling in HCl and HF solutions favor mass loss (0.03–0.1 g/cm2) and effectively remove the initial scale.

Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling / de Andrade, L. M.; Paternoster, C.; Chevallier, P.; Gambaro, S.; Mengucci, P.; Mantovani, D.. - In: BIOACTIVE MATERIALS. - ISSN 2452-199X. - STAMPA. - 11:(2022), pp. 166-180. [10.1016/j.bioactmat.2021.09.026]

Surface processing for iron-based degradable alloys: A preliminary study on the importance of acid pickling

Paternoster C.
Secondo
;
Mengucci P.
Penultimo
Formal Analysis
;
2022-01-01

Abstract

The formation of a heterogeneous oxidized layer, also called scale, on metallic surfaces is widely recognized as a rapid manufacturing event for metals and their alloys. Partial or total removal of the scale represents a mandatory integrated step for the industrial fabrication processes of medical devices. For biodegradable metals, acid pickling has already been reported as a preliminary surface preparation given further processes, such as electropolishing. Unfortunately, biodegradable medical prototypes presented discrepancies concerning acid pickling studies based on samples with less complex geometry (e.g., non-uniform scale removal and rougher surface). Indeed, this translational knowledge lacks a detailed investigation on this process, deep characterization of treated surfaces properties, as well as a comprehensive discussion of the involved mechanisms. In this study, the effects of different acidic media (HCl, HNO3, H3PO4, CH3COOH, H2SO4 and HF), maintained at different temperatures (21 and 60 °C) for various exposition time (15–240 s), on the chemical composition and surface properties of a Fe–13Mn-1.2C biodegradable alloy were investigated. Changes in mass loss, morphology and wettability evidenced the combined effect of temperature and time for all conditions. Pickling in HCl and HF solutions favor mass loss (0.03–0.1 g/cm2) and effectively remove the initial scale.
2022
File in questo prodotto:
File Dimensione Formato  
2022_bioactive_mat_11_166.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/298363
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact