While video-on-demand still takes up the lion's share of Internet traffic, we are witnessing a significant increase in the adoption of mobile applications defined by tight bit rate and latency requirements (e.g., augmented/virtual reality). Supporting such applications over a mobile network is very challenging due to the unsteady nature of the network and the long distance between the users and the application back-end, which usually sits in the cloud. To address these and other challenges, like security, reliability, and scalability, a new paradigm termed multi-access edge computing (MEC) has emerged. MEC places computational resources closer to the end users, thus reducing the overall end-to-end latency and the utilization of the network backhaul. However, to adapt to the volatile nature of a mobile network, MEC applications need real-time information about the status of the radio channel. The ETSI-defined radio network information service (RNIS) is in charge of providing MEC applications with up-to-date information about the radio network. In this article, we first discuss three use cases that can benefit from the RNIS (collision avoidance, media streaming, and Industrial Internet of Things). Then we analyze the requirements and challenges underpinning the design of a scalable RNIS platform, and report on a prototype implementation and its evaluation. Finally, we provide a roadmap of future research challenges.

ONIX: Open Radio Network Information eXchange / Coronado, E.; Raviglione, F.; Malinverno, M.; Casetti, C.; Cantarero, A.; Cebrian-Marquez, G.; Riggio, R.. - In: IEEE COMMUNICATIONS MAGAZINE. - ISSN 0163-6804. - 59:10(2021), pp. 14-20. [10.1109/MCOM.101.2000900]

ONIX: Open Radio Network Information eXchange

Riggio R.
2021-01-01

Abstract

While video-on-demand still takes up the lion's share of Internet traffic, we are witnessing a significant increase in the adoption of mobile applications defined by tight bit rate and latency requirements (e.g., augmented/virtual reality). Supporting such applications over a mobile network is very challenging due to the unsteady nature of the network and the long distance between the users and the application back-end, which usually sits in the cloud. To address these and other challenges, like security, reliability, and scalability, a new paradigm termed multi-access edge computing (MEC) has emerged. MEC places computational resources closer to the end users, thus reducing the overall end-to-end latency and the utilization of the network backhaul. However, to adapt to the volatile nature of a mobile network, MEC applications need real-time information about the status of the radio channel. The ETSI-defined radio network information service (RNIS) is in charge of providing MEC applications with up-to-date information about the radio network. In this article, we first discuss three use cases that can benefit from the RNIS (collision avoidance, media streaming, and Industrial Internet of Things). Then we analyze the requirements and challenges underpinning the design of a scalable RNIS platform, and report on a prototype implementation and its evaluation. Finally, we provide a roadmap of future research challenges.
2021
File in questo prodotto:
File Dimensione Formato  
ONIX_Open_Radio_Network_Information_eXchange.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 834.48 kB
Formato Adobe PDF
834.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
final_submission.pdf

accesso aperto

Descrizione: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Licenza specifica dell’editore
Dimensione 9.55 MB
Formato Adobe PDF
9.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/298312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact