Cadmium, a toxic environmental contaminant, exerts adverse effects on different cellular pathways such as cell proliferation, DNA damage and apoptosis. In particular, the modulation of Ca2+ homeostasis seems to have an important role during Cd2+ injury, but the precise assessment of Ca2+ signalling still remains poorly understood. We used aequorin-based probes specifically directed to intracellular organelles to study Ca2+ changes during cadmium injury. We observed that cadmium decreased agonist-evoked endoplasmic reticulum (ER) Ca2+ signals and caused a 40% inhibition of sarcoplasmic-ER calcium ATPases activity. Moreover, time course experiments correlate morphological alterations, processing of xbp-1 mRNA and caspase-12 activation during cadmium administration. Finally, the time response of ER to cadmium injury was compared with that of mitochondria. In conclusion, we highlighted a novel pathway of cadmium-induced cell death triggered by ER stress and involving caspase-12. Mitochondria and ER pathways seemed to share common time courses and a parallel activation of caspase-12 and caspase-9 seemed likely to be involved in acute cadmium toxicity. © 2007 Elsevier Ltd. All rights reserved.
Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis / Biagioli, M.; Pifferi, S.; Ragghianti, M.; Bucci, S.; Rizzuto, R.; Pinton, P.. - In: CELL CALCIUM. - ISSN 0143-4160. - STAMPA. - 43:2(2008), pp. 184-195. [10.1016/j.ceca.2007.05.003]
Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis
Pifferi S.Secondo
;
2008-01-01
Abstract
Cadmium, a toxic environmental contaminant, exerts adverse effects on different cellular pathways such as cell proliferation, DNA damage and apoptosis. In particular, the modulation of Ca2+ homeostasis seems to have an important role during Cd2+ injury, but the precise assessment of Ca2+ signalling still remains poorly understood. We used aequorin-based probes specifically directed to intracellular organelles to study Ca2+ changes during cadmium injury. We observed that cadmium decreased agonist-evoked endoplasmic reticulum (ER) Ca2+ signals and caused a 40% inhibition of sarcoplasmic-ER calcium ATPases activity. Moreover, time course experiments correlate morphological alterations, processing of xbp-1 mRNA and caspase-12 activation during cadmium administration. Finally, the time response of ER to cadmium injury was compared with that of mitochondria. In conclusion, we highlighted a novel pathway of cadmium-induced cell death triggered by ER stress and involving caspase-12. Mitochondria and ER pathways seemed to share common time courses and a parallel activation of caspase-12 and caspase-9 seemed likely to be involved in acute cadmium toxicity. © 2007 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.