We recorded a permanent phase transmission grating on a thin film made by using a recently developed holographic photomobile mixture. The recorded grating pitch falls in the visible range and can be optically manipulated by using an external coherent or incoherent low power light source. When the external light source illuminates the grating the entire structure bends and, as a consequence, the optical properties of the grating change. This peculiarity makes it possible to use the recorded periodic structure as an all-optically controlled free standing thin colour selector or light switch depending on the source used to illuminate the grating itself. Additionally, it could open up new possibilities for stretchable and reconfigurable holograms controlled by light as well as thin devices for optically reconfigurable dynamic communications and displays.

Light controlled bending of a holographic transmission phase grating / Castagna, R.; Di Donato, A.; Strangi, G.; Eugenio Lucchetta, D.. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - ELETTRONICO. - 31:3(2022). [10.1088/1361-665X/ac4a47]

Light controlled bending of a holographic transmission phase grating

Di Donato A.
;
Eugenio Lucchetta D.
Writing – Review & Editing
2022-01-01

Abstract

We recorded a permanent phase transmission grating on a thin film made by using a recently developed holographic photomobile mixture. The recorded grating pitch falls in the visible range and can be optically manipulated by using an external coherent or incoherent low power light source. When the external light source illuminates the grating the entire structure bends and, as a consequence, the optical properties of the grating change. This peculiarity makes it possible to use the recorded periodic structure as an all-optically controlled free standing thin colour selector or light switch depending on the source used to illuminate the grating itself. Additionally, it could open up new possibilities for stretchable and reconfigurable holograms controlled by light as well as thin devices for optically reconfigurable dynamic communications and displays.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/296652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact