Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous food simulant was determined and no significant changes were observed by the addition of carvacrol and OLA to the PLA_PHB formulations. However, the effect of both additives in fatty food simulant can be considered a positive feature for the potential protection of foodstuff with high fat content. Moreover, the antioxidant and antimicrobial activities of the proposed formulations increased by the presence of carvacrol, with enhanced activity against Staphylococcus aureus if compared to Escherichia coli at short and long incubation times. These results underlined the specific antimicrobial properties of these bio-films suggesting their applicability in active food packaging.

Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging / Burgos, Nuria; Armentano, Ilaria; Fortunati, Elena; Dominici, Franco; Luzi, Francesca; Fiori, Stefano; Cristofaro, Francesco; Visai, Livia; Jiménez, Alfonso; Kenny, José M.. - In: FOOD AND BIOPROCESS TECHNOLOGY. - ISSN 1935-5130. - ELETTRONICO. - 10:4(2017), pp. 770-780. [10.1007/s11947-016-1846-3]

Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging

Luzi, Francesca;
2017-01-01

Abstract

Fully bio-based and biodegradable active films based on poly(lactic acid) (PLA) blended with poly(3-hydroxybutyrate) (PHB) and incorporating lactic acid oligomers (OLA) as plasticizers and carvacrol as active agent were extruded and fully characterized in their functional properties for antimicrobial active packaging. PLA_PHB films showed good barrier to water vapor, while the resistance to oxygen diffusion decreased with the addition of OLA and carvacrol. Their overall migration in aqueous food simulant was determined and no significant changes were observed by the addition of carvacrol and OLA to the PLA_PHB formulations. However, the effect of both additives in fatty food simulant can be considered a positive feature for the potential protection of foodstuff with high fat content. Moreover, the antioxidant and antimicrobial activities of the proposed formulations increased by the presence of carvacrol, with enhanced activity against Staphylococcus aureus if compared to Escherichia coli at short and long incubation times. These results underlined the specific antimicrobial properties of these bio-films suggesting their applicability in active food packaging.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/296498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 60
social impact