A new class of biodegradable materials developed by a combination of random eco-friendly copolyesters containing butylene succinate (BS) and triethylene succinate (TES) sequences with cellulose nanocrystals (CNC), is proposed and studied. Polymers and nanocomposite films were prepared by an optimized extrusion process to improve the processability and mechanical response for flexible film manufacturing. Poly(butylene succinate) (PBS) homopolymer and two random copolyesters containing different amounts of TES co-units, P(BS85TES15) and P(BS70TES30), were synthesized by melt polycondensation. The effect of TES and CNC presence and content on the microstructure, tensile properties, thermal characteristics and disintegration under composting conditions, as well as on the toughening mechanism of the blends was investigated. Material properties were modulated by varying the chemical composition. CNC were used as reinforcement additive and their effect is modulated by the interaction with the three polymeric matrices. The extruded films displayed tunable degradation rates, mechanical properties and wettability, and showed promising results for different industrial applications.

Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals / Fortunati, Elena; Gigli, Matteo; Luzi, Francesca; Dominici, Franco; Lotti, Nadia; Gazzano, Massimo; Cano, Amalia; Chiralt, Amparo; Munari, Andrea; Kenny, Josè Maria; Armentano, Ilaria; Torre, Luigi. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - ELETTRONICO. - 165:(2017), pp. 51-60. [10.1016/j.carbpol.2017.02.024]

Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals

Luzi, Francesca;
2017-01-01

Abstract

A new class of biodegradable materials developed by a combination of random eco-friendly copolyesters containing butylene succinate (BS) and triethylene succinate (TES) sequences with cellulose nanocrystals (CNC), is proposed and studied. Polymers and nanocomposite films were prepared by an optimized extrusion process to improve the processability and mechanical response for flexible film manufacturing. Poly(butylene succinate) (PBS) homopolymer and two random copolyesters containing different amounts of TES co-units, P(BS85TES15) and P(BS70TES30), were synthesized by melt polycondensation. The effect of TES and CNC presence and content on the microstructure, tensile properties, thermal characteristics and disintegration under composting conditions, as well as on the toughening mechanism of the blends was investigated. Material properties were modulated by varying the chemical composition. CNC were used as reinforcement additive and their effect is modulated by the interaction with the three polymeric matrices. The extruded films displayed tunable degradation rates, mechanical properties and wettability, and showed promising results for different industrial applications.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/296496
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact