Nitrogen release from organic amendments, e.g., from organic agriculture, is a key process to raise soil fertility to sustain crop production in low environmental impact agroecosystems. This study aimed to investigate nitrogen release from a pelletized organic amendment containing poultry litter, guano and pot ale applied to soil from a field under two different management systems: an alfalfa-based crop rotation, enriched with N by the legume, under low-intensity tillage and a cereal-sunflower crop rotation under high-intensity tillage. Both sample types were evaluated under different temperature and soil moisture conditions (optimal and variable). The influence of the released amount of N-NO3 on soil microbial biomass, soil basal respiration as well as on β-glucosidase, alkaline phosphatase and o-diphenoloxidase were investigated. The soil fertility level under low-intensity was higher than under high-intensity tillage. Consequently, compared to the control, microbial biomass growth in pellet-treated samples was intensified, both under optimal and variable conditions. Nevertheless, at the end of the experiment under variable conditions, microbial biomass decreased down to the level of the control. Soil moisture was identified as the limiting factor for basal respiration in low-tillage soil, while in the intensively tilled soil, low fertility was limiting, and respiration increased in response to pellet application, supplying C for microbial biomass. During the experimental period, the investigated enzyme activities were somewhat intensified by pellet application, contributing slightly to improve soil biochemical fertility. More N-NO3 was released from soil under low than high-intensity tillage; however after 90-days, the pellet was not completely mineralized, and even at optimal soil moisture content, nitrate release was only partial. This indicated that pelletizing, though useful for practical reasons such as handling, storage and field distribution, can reduce the fertilization efficiency of organic amendments.

Nitrogen release from pelletized poultry fertilizer in two soils: influence of soil moisture and microbial biomass / Monaci, Elga; Angeletti, Carlo; Casucci, Cristiano; Vischetti, Costantino. - In: REVISTA BRASILEIRA DE CIÊNCIA DO SOLO. - ISSN 1806-9657. - ELETTRONICO. - 46:e0210101(2022). [10.36783/18069657rbcs20210101]

Nitrogen release from pelletized poultry fertilizer in two soils: influence of soil moisture and microbial biomass

Elga Monaci;Carlo Angeletti;Cristiano Casucci;Costantino Vischetti
2022-01-01

Abstract

Nitrogen release from organic amendments, e.g., from organic agriculture, is a key process to raise soil fertility to sustain crop production in low environmental impact agroecosystems. This study aimed to investigate nitrogen release from a pelletized organic amendment containing poultry litter, guano and pot ale applied to soil from a field under two different management systems: an alfalfa-based crop rotation, enriched with N by the legume, under low-intensity tillage and a cereal-sunflower crop rotation under high-intensity tillage. Both sample types were evaluated under different temperature and soil moisture conditions (optimal and variable). The influence of the released amount of N-NO3 on soil microbial biomass, soil basal respiration as well as on β-glucosidase, alkaline phosphatase and o-diphenoloxidase were investigated. The soil fertility level under low-intensity was higher than under high-intensity tillage. Consequently, compared to the control, microbial biomass growth in pellet-treated samples was intensified, both under optimal and variable conditions. Nevertheless, at the end of the experiment under variable conditions, microbial biomass decreased down to the level of the control. Soil moisture was identified as the limiting factor for basal respiration in low-tillage soil, while in the intensively tilled soil, low fertility was limiting, and respiration increased in response to pellet application, supplying C for microbial biomass. During the experimental period, the investigated enzyme activities were somewhat intensified by pellet application, contributing slightly to improve soil biochemical fertility. More N-NO3 was released from soil under low than high-intensity tillage; however after 90-days, the pellet was not completely mineralized, and even at optimal soil moisture content, nitrate release was only partial. This indicated that pelletizing, though useful for practical reasons such as handling, storage and field distribution, can reduce the fertilization efficiency of organic amendments.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/295265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact