mmWave Radar systems are becoming very common on vehicles and their capabilities, in terms of range and velocity, make them suitable for another classical radar application, the one related to the micro-Doppler effect. From the processing of mmWave radar signals, the micro-Doppler effect can be exploited, making so possible to extract interesting information on the observed targets. With the huge bandwidth and the short signal transmission time, the micro-Doppler effect can be used for different purposes such as target vibration measurements or targets classification. Thanks also to the advance of Machine Learning techniques, their combination with radar signal processing is an interesting field to explore and can be used to provide solutions to different radar problems. The Micro-Doppler effect has a long story in Radar systems, a lot of literature can be found on this topic but most of them consider non-commercial devices so is quite away from a practical case. In this dissertation, different techniques to process the micro-Doppler signals coming from automotive radars will be presented, with the purpose of classifying them and extracting vibration information from the target. The main contribution of this work is the proposal of novel techniques that can be applied on a commercial sensor and makes them suitable for the micro- Doppler application.

I sistemi radar mmWave stanno diventando molto comuni sui veicoli e le loro capacità, in termini di portata e velocità, li rendono adatti a un'altra classica applicazione radar classica, quella relativa all'effetto micro-Doppler. Dall'elaborazione dei segnali radar mmWave, l'effetto micro-Doppler può essere sfruttato, rendendo così possibile estrarre informazioni interessanti sui bersagli. Con l'enorme larghezza di banda e il breve tempo di trasmissione del segnale, l effetto micro-Doppler può essere utilizzato per diversi scopi come la vibrazione del bersaglio o la classificazione dei bersagli. Grazie anche al progresso delle tecniche di Machine Learning, la loro combinazione con elaborazione del segnale radar è un campo interessante da esplorare e può essere usato per fornire soluzioni a diversi problemi radar. L'effetto Micro-Doppler ha una lunga storia nei sistemi radar, un sacco di letteratura può essere trovata su questo argomento, ma la maggior parte di loro considera dispositivi non commerciali quindi è abbastanza lontano da un caso pratico. In questa dissertazione, diverse tecniche per elaborare i segnali micro-Doppler provenienti da radar automobilistici sarà presentato, con lo scopo di classificarli ed estrarre informazioni sulle vibrazioni dal bersaglio. Il contributo principale di questo lavoro è la proposta di nuove tecniche che possono essere applicato su un sensore commerciale e li rende adatti per il micro- Doppler.

Modern techniques to process micro-Doppler signals from mmWave Radars / Ciattaglia, Gianluca. - (2022 Mar 04).

Modern techniques to process micro-Doppler signals from mmWave Radars

CIATTAGLIA, Gianluca
2022-03-04

Abstract

mmWave Radar systems are becoming very common on vehicles and their capabilities, in terms of range and velocity, make them suitable for another classical radar application, the one related to the micro-Doppler effect. From the processing of mmWave radar signals, the micro-Doppler effect can be exploited, making so possible to extract interesting information on the observed targets. With the huge bandwidth and the short signal transmission time, the micro-Doppler effect can be used for different purposes such as target vibration measurements or targets classification. Thanks also to the advance of Machine Learning techniques, their combination with radar signal processing is an interesting field to explore and can be used to provide solutions to different radar problems. The Micro-Doppler effect has a long story in Radar systems, a lot of literature can be found on this topic but most of them consider non-commercial devices so is quite away from a practical case. In this dissertation, different techniques to process the micro-Doppler signals coming from automotive radars will be presented, with the purpose of classifying them and extracting vibration information from the target. The main contribution of this work is the proposal of novel techniques that can be applied on a commercial sensor and makes them suitable for the micro- Doppler application.
4-mar-2022
I sistemi radar mmWave stanno diventando molto comuni sui veicoli e le loro capacità, in termini di portata e velocità, li rendono adatti a un'altra classica applicazione radar classica, quella relativa all'effetto micro-Doppler. Dall'elaborazione dei segnali radar mmWave, l'effetto micro-Doppler può essere sfruttato, rendendo così possibile estrarre informazioni interessanti sui bersagli. Con l'enorme larghezza di banda e il breve tempo di trasmissione del segnale, l effetto micro-Doppler può essere utilizzato per diversi scopi come la vibrazione del bersaglio o la classificazione dei bersagli. Grazie anche al progresso delle tecniche di Machine Learning, la loro combinazione con elaborazione del segnale radar è un campo interessante da esplorare e può essere usato per fornire soluzioni a diversi problemi radar. L'effetto Micro-Doppler ha una lunga storia nei sistemi radar, un sacco di letteratura può essere trovata su questo argomento, ma la maggior parte di loro considera dispositivi non commerciali quindi è abbastanza lontano da un caso pratico. In questa dissertazione, diverse tecniche per elaborare i segnali micro-Doppler provenienti da radar automobilistici sarà presentato, con lo scopo di classificarli ed estrarre informazioni sulle vibrazioni dal bersaglio. Il contributo principale di questo lavoro è la proposta di nuove tecniche che possono essere applicato su un sensore commerciale e li rende adatti per il micro- Doppler.
micro-Doppler; Radar; FMCW; Machine Learning
micro-Doppler; Radar; FMCW; Machine Learning
File in questo prodotto:
File Dimensione Formato  
Tesi_Ciattaglia.pdf

accesso aperto

Descrizione: Tesi_Ciattaglia
Tipologia: Tesi di dottorato
Licenza d'uso: Creative commons
Dimensione 42.88 MB
Formato Adobe PDF
42.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/295142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact