In this note, we prove a strong maximum principle for weak supersolutions of (−Δ)psu+(−Δ)qsu+c(x)(|u|p−2u+|u|q−2u)=0 in Ω, where Ω⊂RN is an open set, s∈(0,1), 1<∞, c∈C(Ω¯), and (−Δ)ts, with t∈{p,q}, is the fractional t-Laplacian operator.
A strong maximum principle for the fractional (p,q)-Laplacian operator / Ambrosio, V.. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 126:(2022), p. 107813. [10.1016/j.aml.2021.107813]
A strong maximum principle for the fractional (p,q)-Laplacian operator
Ambrosio V.
2022-01-01
Abstract
In this note, we prove a strong maximum principle for weak supersolutions of (−Δ)psu+(−Δ)qsu+c(x)(|u|p−2u+|u|q−2u)=0 in Ω, where Ω⊂RN is an open set, s∈(0,1), 1<∞, c∈C(Ω¯), and (−Δ)ts, with t∈{p,q}, is the fractional t-Laplacian operator.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.