We collect some interesting results for equations driven by the fractional relativistic Schrödinger operator (−Δ+m2)s with s∈(0,1) and m>0. More precisely, for the linear theory, we prove Hölder-Schauder-Zygmund regularity results and a Kato's inequality. For the nonlinear theory, we obtain L∞-regularity, exponential decay, a Pohozaev-type identity, and a symmetry result for solutions of certain nonlinear fractional problems.
On the fractional relativistic Schrödinger operator / Ambrosio, V.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 308:(2022), pp. 327-368. [10.1016/j.jde.2021.07.048]
On the fractional relativistic Schrödinger operator
Ambrosio V.
2022-01-01
Abstract
We collect some interesting results for equations driven by the fractional relativistic Schrödinger operator (−Δ+m2)s with s∈(0,1) and m>0. More precisely, for the linear theory, we prove Hölder-Schauder-Zygmund regularity results and a Kato's inequality. For the nonlinear theory, we obtain L∞-regularity, exponential decay, a Pohozaev-type identity, and a symmetry result for solutions of certain nonlinear fractional problems.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022039621006884-main.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
556.95 kB
Formato
Adobe PDF
|
556.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ambr-relNEW6.pdf
Open Access dal 20/11/2023
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
637.4 kB
Formato
Adobe PDF
|
637.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.