In this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.
A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation / Ambrosio, V.; Isernia, T.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 201:2(2022), pp. 943-984. [10.1007/s10231-021-01145-y]
A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation
Ambrosio V.
;Isernia T.
2022-01-01
Abstract
In this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.File | Dimensione | Formato | |
---|---|---|---|
Ambrosio_A-multiciply-result_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
4.04 MB
Formato
Adobe PDF
|
4.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.