In this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.

A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation

Ambrosio V.;Isernia T.
2022-01-01

Abstract

In this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/294873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact