We consider a nonlinear periodic problem driven by the scalar p-Laplacian with a nonsmooth potential function. First we establish an alternative minimax expression for the first nonzero eigenvalue for the negative periodic scalar p-Laplacian and then using it we prove the existence of three nontrivial solutions, two of which have constant sign. Our approach is variational based on the nonsmooth critical point theory.

On the existence of three nontrivial solutions for periodic problems driven by the scalar p-Laplacian / Papageorgiou, N; Papalini, Francesca. - In: ADVANCED NONLINEAR STUDIES. - ISSN 1536-1365. - 11 (2):(2011), pp. 455-471.

On the existence of three nontrivial solutions for periodic problems driven by the scalar p-Laplacian

PAPALINI, Francesca
2011-01-01

Abstract

We consider a nonlinear periodic problem driven by the scalar p-Laplacian with a nonsmooth potential function. First we establish an alternative minimax expression for the first nonzero eigenvalue for the negative periodic scalar p-Laplacian and then using it we prove the existence of three nontrivial solutions, two of which have constant sign. Our approach is variational based on the nonsmooth critical point theory.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/29485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact