Currently, various analytical techniques, including scanning electron microscopy, X-Ray diffraction, microcomputed tomography, and energy dispersive X-ray spectroscopy, are available to study the structural or elemental features of hard dental tissues. In contrast to these approaches, Raman Microspectroscopy (RMS) has the great advantage of simultaneously providing, at the same time and on the same sample, a morpho-chemical correlation between the microscopic information from the visual analysis of the sample and its chemical and macromolecular composition. Hence, RMS represents an innovative and non-invasive technique to study both inorganic and organic teeth components in vitro. The aim of this narrative review is to shed new light on the applicative potential of Raman Microspectroscopy in the dental field. Specific Raman markers representative of sound and pathological hard dental tissues will be discussed, and the future diagnostic application of this technique will be outlined. The objective and detailed information provided by this technique in terms of the structure and chemical/macromolecular components of sound and pathological hard dental tissues could be useful for improving knowledge of several dental pathologies. Scientific articles regarding RMS studies of human hard dental tissues were retrieved from the principal databases by following specific inclusion and exclusion criteria.

Vibrational imaging techniques for the characterization of hard dental tissues: From bench-top to chair-side / Orsini, G.; Orilisi, G.; Notarstefano, V.; Monterubbianesi, R.; Vitiello, F.; Tosco, V.; Belloni, A.; Putignano, A.; Giorgini, E.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:24(2021), p. 11953. [10.3390/app112411953]

Vibrational imaging techniques for the characterization of hard dental tissues: From bench-top to chair-side

Orsini G.
Conceptualization
;
Orilisi G.
Writing – Original Draft Preparation
;
Notarstefano V.
Data Curation
;
Monterubbianesi R.
Writing – Original Draft Preparation
;
Tosco V.
Validation
;
Belloni A.
Methodology
;
Putignano A.
Visualization
;
Giorgini E.
Supervision
2021-01-01

Abstract

Currently, various analytical techniques, including scanning electron microscopy, X-Ray diffraction, microcomputed tomography, and energy dispersive X-ray spectroscopy, are available to study the structural or elemental features of hard dental tissues. In contrast to these approaches, Raman Microspectroscopy (RMS) has the great advantage of simultaneously providing, at the same time and on the same sample, a morpho-chemical correlation between the microscopic information from the visual analysis of the sample and its chemical and macromolecular composition. Hence, RMS represents an innovative and non-invasive technique to study both inorganic and organic teeth components in vitro. The aim of this narrative review is to shed new light on the applicative potential of Raman Microspectroscopy in the dental field. Specific Raman markers representative of sound and pathological hard dental tissues will be discussed, and the future diagnostic application of this technique will be outlined. The objective and detailed information provided by this technique in terms of the structure and chemical/macromolecular components of sound and pathological hard dental tissues could be useful for improving knowledge of several dental pathologies. Scientific articles regarding RMS studies of human hard dental tissues were retrieved from the principal databases by following specific inclusion and exclusion criteria.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/294400
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact