Diverse sensor-based technologies can be used to track (older and frail) people’s movements and behaviors in order to detect anomalies and emergencies. Using several ambient sensors and integrating them into an assisting ambient system allows for the early identification of emergency situations and health-related changes. Typical examples are passive infrared sensors (PIR), humidity and temperature sensors (H&T) as well as magnetic sensors (MAG). So far, it is not known whether and to what extent these three specific sensor types are perceived and accepted differently by future users. Therefore, the present study analyzed the perception of benefits and barriers as well as acceptance of these specific sensor-based technologies using an online survey (reaching N = 312 German participants). The results show technology-related differences, especially regarding the perception of benefits. Furthermore, the participants estimated the costs of these sensors to be higher than they are, but at the same time showed a relatively high willingness to pay for the implementation of sensor-based technologies in their home environment. The results enable the derivation of guidelines for both the technical development and the communication and information of assisting sensor-based technologies and systems.
Acceptance and preferences of using ambient sensor-based lifelogging technologies in home environments / Offermann, J.; Wilkowska, W.; Poli, A.; Spinsante, S.; Ziefle, M.. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 21:24(2021), p. 8297. [10.3390/s21248297]
Acceptance and preferences of using ambient sensor-based lifelogging technologies in home environments
Poli A.;Spinsante S.Penultimo
Funding Acquisition
;
2021-01-01
Abstract
Diverse sensor-based technologies can be used to track (older and frail) people’s movements and behaviors in order to detect anomalies and emergencies. Using several ambient sensors and integrating them into an assisting ambient system allows for the early identification of emergency situations and health-related changes. Typical examples are passive infrared sensors (PIR), humidity and temperature sensors (H&T) as well as magnetic sensors (MAG). So far, it is not known whether and to what extent these three specific sensor types are perceived and accepted differently by future users. Therefore, the present study analyzed the perception of benefits and barriers as well as acceptance of these specific sensor-based technologies using an online survey (reaching N = 312 German participants). The results show technology-related differences, especially regarding the perception of benefits. Furthermore, the participants estimated the costs of these sensors to be higher than they are, but at the same time showed a relatively high willingness to pay for the implementation of sensor-based technologies in their home environment. The results enable the derivation of guidelines for both the technical development and the communication and information of assisting sensor-based technologies and systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.