Instrumented nanoindentation tests have reached an effective level of theoretical and practical knowledge to become an interesting and useful tool for determining hardness, H, and local elasticity (reduced Young’s modulus), Er, of a variety of materials, from coatings and thin films to bulk metallic materials. Nanoindentation instruments are equipped with analysis software for raw data for hardness and reduced Young’s modulus evaluation, generally based on the Oliver and Pharr analysis method. On the other hand, it is widely known and recognized that prior data acquisition, a tip-dependent calibration procedure of compliance, and area function are needed. With this in view, an accurate and sound calibration protocol is here reported. Hardness and local elastic modulus is measured on different bulk metallic materials, showing the distinctive strengths of using nanoindentation. Finally, a local elastic-plastic phenomenon mostly induced by the nanoindentation tip on ductile metallic material (i.e., pile-up) is also reported and modelled. This manuscript is thus intended to favor and account for the importance of using the instrumented nanoindentation tests for H and Er measurements of metallic materials.

Instrumented Nanoindentation Tests Applied to Bulk Metallic Materials: From Calibration Issue to Pile-Up Phenomena / Cabibbo, M.. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 14:(2021), p. 6360. [10.3390/ma14216360]

Instrumented Nanoindentation Tests Applied to Bulk Metallic Materials: From Calibration Issue to Pile-Up Phenomena

Cabibbo, M.
2021-01-01

Abstract

Instrumented nanoindentation tests have reached an effective level of theoretical and practical knowledge to become an interesting and useful tool for determining hardness, H, and local elasticity (reduced Young’s modulus), Er, of a variety of materials, from coatings and thin films to bulk metallic materials. Nanoindentation instruments are equipped with analysis software for raw data for hardness and reduced Young’s modulus evaluation, generally based on the Oliver and Pharr analysis method. On the other hand, it is widely known and recognized that prior data acquisition, a tip-dependent calibration procedure of compliance, and area function are needed. With this in view, an accurate and sound calibration protocol is here reported. Hardness and local elastic modulus is measured on different bulk metallic materials, showing the distinctive strengths of using nanoindentation. Finally, a local elastic-plastic phenomenon mostly induced by the nanoindentation tip on ductile metallic material (i.e., pile-up) is also reported and modelled. This manuscript is thus intended to favor and account for the importance of using the instrumented nanoindentation tests for H and Er measurements of metallic materials.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/293804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact