The complexity of wireless and mobile networks is growing at an unprecedented pace. This trend is proving current network control and management techniques based on analytical models and simulations to be impractical, especially if combined with the data deluge expected from future applications such as augmented reality. This is particularly true for software-defined wireless local area networks (SO-WLANs). It is our belief that to battle this growing complexity, future SO-WLANs must follow an artificial intelligence (AI) -native approach. In this article, we introduce aiOS, which is an AI-based platform that builds toward the autonomous management of SD-WLANs. Our proposal is aligned with the most recent trends in in-network AI promoted by the ITU Telecommunication Standardization Sector (ITU-T) and with the architecture for disaggregated radio access networks promoted by the Open Radio Access Network Alliance. We validate aiOS in a practical use case, namely frame size optimization in SD-WLANs, and we consider the long-term evolution, challenges, and scenarios for AI-assisted network automation in the wireless and mobile networking domain.
AI-Empowered Software-Defined WLANs / Coronado, E.; Bayhan, S.; Thomas, A.; Riggio, R.. - In: IEEE COMMUNICATIONS MAGAZINE. - ISSN 0163-6804. - 59:3(2021), pp. 9422336.54-9422336.60. [10.1109/MCOM.001.2000895]
AI-Empowered Software-Defined WLANs
Riggio R.
2021-01-01
Abstract
The complexity of wireless and mobile networks is growing at an unprecedented pace. This trend is proving current network control and management techniques based on analytical models and simulations to be impractical, especially if combined with the data deluge expected from future applications such as augmented reality. This is particularly true for software-defined wireless local area networks (SO-WLANs). It is our belief that to battle this growing complexity, future SO-WLANs must follow an artificial intelligence (AI) -native approach. In this article, we introduce aiOS, which is an AI-based platform that builds toward the autonomous management of SD-WLANs. Our proposal is aligned with the most recent trends in in-network AI promoted by the ITU Telecommunication Standardization Sector (ITU-T) and with the architecture for disaggregated radio access networks promoted by the Open Radio Access Network Alliance. We validate aiOS in a practical use case, namely frame size optimization in SD-WLANs, and we consider the long-term evolution, challenges, and scenarios for AI-assisted network automation in the wireless and mobile networking domain.File | Dimensione | Formato | |
---|---|---|---|
AI-Empowered_Software-Defined_WLANs.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
849.82 kB
Formato
Adobe PDF
|
849.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
commag2021_ai_wifi_FINAL.pdf
accesso aperto
Descrizione: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Licenza specifica dell’editore
Dimensione
7.21 MB
Formato
Adobe PDF
|
7.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.