The main issue of this paper is the instability of no-tension structural members reinforced with FRP. This study concerns the instability of FRP reinforcement. The primary instability problem of a compressed element involves the partialization of the inflex section. In particular, in the case of a compressed slender element reinforced on both tense and compressed side FRP delamination phaenomenon could occur on the latter. This entails the loss of the reinforcement effectiveness in the compressed area for nominal load values much lower than material effective strength. Therefore, structural elements or portions thereof which absorb axial components in the direction of the reinforcement may exhibit relatively modest performance with respect to the unreinforced configuration. By employing a no-tension material linear in compression, an analytical solution for FRP buckling delamination length is provided. The main objective of this paper is to provide a simplified tool that allows to evaluate the critical load of the reinforced beam-column and to predict the tension at which delamination and the loss of effectiveness of reinforcement in the compressed area could occur.
BUCKLING DELAMINATION IN COMPRESSED NO-TENSION HOMOGENEOUS BRITTLE BEAM-COLUMNS REINFORCED WITH FRP / Marchione, Francesco. - In: STAVEBNÍ OBZOR. - ISSN 1805-2576. - ELETTRONICO. - 30:1(2021). [10.14311/CEJ.2021.01.0026]
BUCKLING DELAMINATION IN COMPRESSED NO-TENSION HOMOGENEOUS BRITTLE BEAM-COLUMNS REINFORCED WITH FRP
Francesco Marchione
Primo
Writing – Original Draft Preparation
2021-01-01
Abstract
The main issue of this paper is the instability of no-tension structural members reinforced with FRP. This study concerns the instability of FRP reinforcement. The primary instability problem of a compressed element involves the partialization of the inflex section. In particular, in the case of a compressed slender element reinforced on both tense and compressed side FRP delamination phaenomenon could occur on the latter. This entails the loss of the reinforcement effectiveness in the compressed area for nominal load values much lower than material effective strength. Therefore, structural elements or portions thereof which absorb axial components in the direction of the reinforcement may exhibit relatively modest performance with respect to the unreinforced configuration. By employing a no-tension material linear in compression, an analytical solution for FRP buckling delamination length is provided. The main objective of this paper is to provide a simplified tool that allows to evaluate the critical load of the reinforced beam-column and to predict the tension at which delamination and the loss of effectiveness of reinforcement in the compressed area could occur.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.