Recently, severe intensification of atmospheric carbon recognizes the importance of urban tree contributions in atmospheric carbon mitigation in city areas considering a sustainable urban green planning and management system. Explicit and timely information on urban trees and their roles in atmospheric Carbon Stock (CS) are essential for the policymakers to take immediate actions to recover the effects of deforestation and their worsening outcomes. This doctoral study will be a way out for the policymakers in CS mapping for the dominant tree species in their cities based on Remote Sensing (RS) data sources. The mapping approach could be a useful tool especially for developing countries, where hyperspectral data could be a better solution over the hardly available LiDAR data. In this study, a detailed methodology on the urban tree CS calibration and mapping was done for two urban areas one of which was in Sassuolo (MO), a smaller city in Italy. The other one was conducted in the capital region of Belgium (Brussels), where also the comparative analysis of the two different remote sensing data sources (LiDAR and WorldView 3 (WV3)) and their mapping outcomes were assessed to define the convenience and applicability of the data sources. In Sassuolo, CS mapping was done utilizing only the WV3 image data for a smaller study area of 22 plots (10m×10m each) where the 7 plots were utilized to validate the results of tree species classification and the CS calibration and mapping. Later in Brussels, the approach was implied for a larger study area of 75 plots (10m×10m each) where 20 plots were utilized for the validation of CS calibration and mapping outcomes. In all cases, either in Sassuolo or in Brussels, dominant tree species were identified and classified utilizing the high-resolution WV3 image. The Object-Based Image Analysis (OBIA) classification approach was successfully employed to attain the overall accuracy of 78% and 71% for the tree species in Sassuolo and Brussels respectively. The field estimations of CS for each plot were done utilizing an allometric model based on the field data on tree dendrometry i.e. Height (H) and Diameter at Breast Height (DBH). Later the computed CS based on the field data along with the WV3 (NDVI) and LiDAR (CHM) data derived variables, had been mapped in QGIS. The results were found quite evident for both cities which did approve the approach as an efficient and convenient way of mapping, certainly recognizing the dominant tree species contributions in atmospheric CS. No doubt, this study will assist the city planners to understand and decide the applicability of remote sensing data sources based on their availability and the level of expediency, ensuring a sustainable urban green management system.

Recentemente, Negli ultimi anni, il preoccupante incremento del contributo del carbonio atmosferico al cambio climatico ha sollevato con forza il dibattito. In area urbana, le misure di mitigazione si stanno concentrando, tra le altre, sul ruolo delle infrastrutture verdi. In particolare, gli approcci improntati a sistemi di pianificazione e gestione del verde urbano sostenibili sembrano essere promettenti. Informazioni esplicite e tempestive sulla composizione strutturale e funzionale delle infrastrutture verdi e sulle singole strutture o aggregati di alberi urbani, in merito al loro ruolo nella cattura del carbonio atmosferico iv (CS), sono essenziali affinché i responsabili delle amministrazioni locali adottino azioni immediate per mitigare il peggioramento dell’impatto delle attività antropiche. In questo studio, è stata adottata una metodologia dettagliata per la calibrazione e mappatura del CS delle alberature in due aree urbane. Uno studio è stato condotto a Sassuolo (MO), una città italiana di dimensioni medie. L'altro, è stato condotto nella regione della capitale del Belgio (Bruxelles), dove sono state anche valutate ed analizzate in modo comparativo le due diverse fonti di dati di telerilevamento (LiDAR e WorldView 3 (WV3)) ed i rispettivi risultati di mappatura. A Sassuolo, la mappatura del CS è stata eseguita utilizzando solo dati da immagini WV3 per un'area di studio alla scala locale di dettaglio. In particolare, alla scala di parco urbano, sono state selezionate 22 parcelle (10 m × 10 m ciascuna) di cui 7 per la validazione dei risultati della classificazione delle specie arboree e della calibrazione e mappatura del CS. In un secondo esperimento, a Bruxelles, l'approccio è stato replicato per un'area di studio più ampia, alla scala di città metropolitana. In questo caso, 75 parcelle (10 m × 10 m ciascuna) sono state utilizzate, di cui 20 per la convalida della calibrazione dei risultati della mappatura del CS. In entrambi i casi, sia a Sassuolo sia a Bruxelles, le specie arboree dominanti sono state identificate e classificate utilizzando immagini WV3 ad alta risoluzione. L'approccio di classificazione OBIA (Object-Based Image Analysis) è stato impiegato con successo ottenendo una precisione complessiva (Overall Accuracy) del 78% e del 71%, rispettivamente, per le relative specie arboree. Le stime del CS per ciascun caso sono state computate, a livello del singolo plot, utilizzando un modello allometrico basato su dati dendrometrici rilevati in campo, ad esempio altezza della pianta (H) e diametro del fusto all'altezza del petto (DBH). Successivamente il CS calcolato in base ai dati dicampo, insieme alle variabili derivate dall’elaborazione dei dati WV3 (NDVI) e LiDAR (CHM), sono stati mappati usando il sistema informativo geografico QGIS. I risultati ottenuti per entrambe le città hanno permesso di validare l'approccio, quale metodo efficiente e conveniente per mappare alla scala urbana, sia media che metropolitana, il contributo delle specie arboree dominanti nella cattura del carbonio atmosferico (CS). Questo studio aiuterà sicuramente urbanisti e pianificatori a meglio comprendere e meglio progettare la pianificazione delle infrastrutture verdi urbane, basandosi su dati provenienti da fonti telerilevate da remoto, e ove possibile prossimali, in base alla loro disponibilità ed al livello di opportunità, al fine di implementare un sistema sostenibile di gestione del verde urbano.

Remote sensing approaches in carbon stock (CS) mapping considering the dominant tree species in urban areas.

CHOUDHURY, MD ABDUL MUEED
2021

Abstract

Recentemente, Negli ultimi anni, il preoccupante incremento del contributo del carbonio atmosferico al cambio climatico ha sollevato con forza il dibattito. In area urbana, le misure di mitigazione si stanno concentrando, tra le altre, sul ruolo delle infrastrutture verdi. In particolare, gli approcci improntati a sistemi di pianificazione e gestione del verde urbano sostenibili sembrano essere promettenti. Informazioni esplicite e tempestive sulla composizione strutturale e funzionale delle infrastrutture verdi e sulle singole strutture o aggregati di alberi urbani, in merito al loro ruolo nella cattura del carbonio atmosferico iv (CS), sono essenziali affinché i responsabili delle amministrazioni locali adottino azioni immediate per mitigare il peggioramento dell’impatto delle attività antropiche. In questo studio, è stata adottata una metodologia dettagliata per la calibrazione e mappatura del CS delle alberature in due aree urbane. Uno studio è stato condotto a Sassuolo (MO), una città italiana di dimensioni medie. L'altro, è stato condotto nella regione della capitale del Belgio (Bruxelles), dove sono state anche valutate ed analizzate in modo comparativo le due diverse fonti di dati di telerilevamento (LiDAR e WorldView 3 (WV3)) ed i rispettivi risultati di mappatura. A Sassuolo, la mappatura del CS è stata eseguita utilizzando solo dati da immagini WV3 per un'area di studio alla scala locale di dettaglio. In particolare, alla scala di parco urbano, sono state selezionate 22 parcelle (10 m × 10 m ciascuna) di cui 7 per la validazione dei risultati della classificazione delle specie arboree e della calibrazione e mappatura del CS. In un secondo esperimento, a Bruxelles, l'approccio è stato replicato per un'area di studio più ampia, alla scala di città metropolitana. In questo caso, 75 parcelle (10 m × 10 m ciascuna) sono state utilizzate, di cui 20 per la convalida della calibrazione dei risultati della mappatura del CS. In entrambi i casi, sia a Sassuolo sia a Bruxelles, le specie arboree dominanti sono state identificate e classificate utilizzando immagini WV3 ad alta risoluzione. L'approccio di classificazione OBIA (Object-Based Image Analysis) è stato impiegato con successo ottenendo una precisione complessiva (Overall Accuracy) del 78% e del 71%, rispettivamente, per le relative specie arboree. Le stime del CS per ciascun caso sono state computate, a livello del singolo plot, utilizzando un modello allometrico basato su dati dendrometrici rilevati in campo, ad esempio altezza della pianta (H) e diametro del fusto all'altezza del petto (DBH). Successivamente il CS calcolato in base ai dati dicampo, insieme alle variabili derivate dall’elaborazione dei dati WV3 (NDVI) e LiDAR (CHM), sono stati mappati usando il sistema informativo geografico QGIS. I risultati ottenuti per entrambe le città hanno permesso di validare l'approccio, quale metodo efficiente e conveniente per mappare alla scala urbana, sia media che metropolitana, il contributo delle specie arboree dominanti nella cattura del carbonio atmosferico (CS). Questo studio aiuterà sicuramente urbanisti e pianificatori a meglio comprendere e meglio progettare la pianificazione delle infrastrutture verdi urbane, basandosi su dati provenienti da fonti telerilevate da remoto, e ove possibile prossimali, in base alla loro disponibilità ed al livello di opportunità, al fine di implementare un sistema sostenibile di gestione del verde urbano.
Recently, severe intensification of atmospheric carbon recognizes the importance of urban tree contributions in atmospheric carbon mitigation in city areas considering a sustainable urban green planning and management system. Explicit and timely information on urban trees and their roles in atmospheric Carbon Stock (CS) are essential for the policymakers to take immediate actions to recover the effects of deforestation and their worsening outcomes. This doctoral study will be a way out for the policymakers in CS mapping for the dominant tree species in their cities based on Remote Sensing (RS) data sources. The mapping approach could be a useful tool especially for developing countries, where hyperspectral data could be a better solution over the hardly available LiDAR data. In this study, a detailed methodology on the urban tree CS calibration and mapping was done for two urban areas one of which was in Sassuolo (MO), a smaller city in Italy. The other one was conducted in the capital region of Belgium (Brussels), where also the comparative analysis of the two different remote sensing data sources (LiDAR and WorldView 3 (WV3)) and their mapping outcomes were assessed to define the convenience and applicability of the data sources. In Sassuolo, CS mapping was done utilizing only the WV3 image data for a smaller study area of 22 plots (10m×10m each) where the 7 plots were utilized to validate the results of tree species classification and the CS calibration and mapping. Later in Brussels, the approach was implied for a larger study area of 75 plots (10m×10m each) where 20 plots were utilized for the validation of CS calibration and mapping outcomes. In all cases, either in Sassuolo or in Brussels, dominant tree species were identified and classified utilizing the high-resolution WV3 image. The Object-Based Image Analysis (OBIA) classification approach was successfully employed to attain the overall accuracy of 78% and 71% for the tree species in Sassuolo and Brussels respectively. The field estimations of CS for each plot were done utilizing an allometric model based on the field data on tree dendrometry i.e. Height (H) and Diameter at Breast Height (DBH). Later the computed CS based on the field data along with the WV3 (NDVI) and LiDAR (CHM) data derived variables, had been mapped in QGIS. The results were found quite evident for both cities which did approve the approach as an efficient and convenient way of mapping, certainly recognizing the dominant tree species contributions in atmospheric CS. No doubt, this study will assist the city planners to understand and decide the applicability of remote sensing data sources based on their availability and the level of expediency, ensuring a sustainable urban green management system.
Carbon Stock (CS), Remote sensing, OBIA, WV3, LiDAR data, Urban trees, Mapping QGIS
Carbon Stock (CS), Telerilevamento, OBIA, WV3, dati LiDAR, Alberi urbani, Mappatura QGIS
File in questo prodotto:
File Dimensione Formato  
Tesi_Choudhury.pdf

embargo fino al 18/01/2023

Descrizione: Tesi_Choudhury
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/290836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact