Electrochemical microscopy techniques have extended the understanding of surface chemistry to the micrometer and even sub-micrometer level. However, fundamental questions related to charge transport at the solidelectrolyte interface, such as catalytic reactions or operation of individual ion channels, require improved spatial resolutions down to the nanoscale. A prerequisite for single-molecule electrochemical sensitivity is the reliable detection of a few electrons per second, that is, currents in the atto-Ampere (10−18 A) range, 1000 times below today’s electrochemical microscopes. This work reports local cyclic voltammetry (CV) measurements at the solid-liquid interface on ferrocene self-assembled monolayer (SAM) with sub-atto-Ampere sensitivity and simultaneous spatial resolution < 80 nm. Such sensitivity is obtained through measurements of the charging of the local faradaic interface capacitance at GHz frequencies. Nanometer-scale details of different molecular organizations with a 19% packing density difference are resolved, with an extremely small dispersion of the molecular electrical properties. This is predicted previously based on weak electrostatic interactions between neighboring redox molecules in a SAM configuration. These results open new perspectives for nano-electrochemistry like the study of quantum mechanical resonance in complex molecules and a wide range of applications from electrochemical catalysis to biophysics.
Attoampere Nanoelectrochemistry / Grall, Simon; Alić, Ivan; Pavoni, Eleonora; Awadein, Mohamed; Fujii, Teruo; Müllegger, Stefan; Farina, Marco; Clément, Nicolas; Gramse, Georg. - In: SMALL. - ISSN 1613-6810. - 17:29(2021). [10.1002/smll.202101253]
Attoampere Nanoelectrochemistry
Pavoni, Eleonora;Farina, Marco;
2021-01-01
Abstract
Electrochemical microscopy techniques have extended the understanding of surface chemistry to the micrometer and even sub-micrometer level. However, fundamental questions related to charge transport at the solidelectrolyte interface, such as catalytic reactions or operation of individual ion channels, require improved spatial resolutions down to the nanoscale. A prerequisite for single-molecule electrochemical sensitivity is the reliable detection of a few electrons per second, that is, currents in the atto-Ampere (10−18 A) range, 1000 times below today’s electrochemical microscopes. This work reports local cyclic voltammetry (CV) measurements at the solid-liquid interface on ferrocene self-assembled monolayer (SAM) with sub-atto-Ampere sensitivity and simultaneous spatial resolution < 80 nm. Such sensitivity is obtained through measurements of the charging of the local faradaic interface capacitance at GHz frequencies. Nanometer-scale details of different molecular organizations with a 19% packing density difference are resolved, with an extremely small dispersion of the molecular electrical properties. This is predicted previously based on weak electrostatic interactions between neighboring redox molecules in a SAM configuration. These results open new perspectives for nano-electrochemistry like the study of quantum mechanical resonance in complex molecules and a wide range of applications from electrochemical catalysis to biophysics.File | Dimensione | Formato | |
---|---|---|---|
Small - 2021 - Grall - Attoampere Nanoelectrochemistry (1).pdf
accesso aperto
Descrizione: articolo pubblicato
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Creative commons
Dimensione
784.15 kB
Formato
Adobe PDF
|
784.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.