The first phase of this study aimed to evaluate the environmental impact of combined sewer overflow (CSO) events originated from 35 spillways on the Rio Vallescura catchment (Central Italy) and to understand their contribution to the deterioration of the coastal bathing water quality. A specific analytical campaign was carried out in the sewer system and a dynamic rainfall-runoff simulation model was developed and integrated with a water quality model and further validated. The simulations led to identify the most critical spills in terms of flow rate and selected pollutant loads (i.e. suspended solids, biochemical oxygen demand, chemical oxygen demand, total Kjeldahl nitrogen, Escherichia coli). Specifically, the E. coli release in the water body due to CSO events represented almost 100% of the different pollutant sources considered. In the second phase, the applicability of various disinfection methods was investigated on the CSOs introduced into the catchment. On site physical (UV) and lab-scale chemical (peracetic acid (PAA), performic acid (PFA), ozone) disinfectant agents were tested on microbial indicators including E. coli and intestinal enterococci. PFA and ozone were more effective on the removal of both bacteria (above 3.5 log units) even at low concentration and with short contact time; whereas, PAA showed a moderate removal efficiency (around 2.5 log units) only for E. coli. The highest removal efficiency was achieved in the on-site UV unit and none of the indicator bacteria was detected in the final effluent after the sand filtration and UV treatment. Finally, potential scenarios were developed in comparison to the baseline scenario for the management and treatment of CSOs where a mitigation of E. coli loads from 28% to 73% was achieved on the receiving water body, and a comparative cost assessment of the disinfection methods was provided for in situ treatment of the most critical spillway.
Catchment-wide validated assessment of combined sewer overflows (CSOs) in a mediterranean coastal area and possible disinfection methods to mitigate microbial contamination / Crocetti, Paolo; Eusebi, Anna Laura; Bruni, Cecilia; Marinelli, Enrico; Darvini, Giovanna; Bernardo Carini, Claudio; Bollettini, Cristiana; Recanati, Virginia; Akyol, Çağrı; Fatone, Francesco. - In: ENVIRONMENTAL RESEARCH. - ISSN 0013-9351. - ELETTRONICO. - 196:(2021). [10.1016/j.envres.2020.110367]
Catchment-wide validated assessment of combined sewer overflows (CSOs) in a mediterranean coastal area and possible disinfection methods to mitigate microbial contamination
Paolo Crocetti;Anna Laura Eusebi
;Cecilia Bruni;Enrico Marinelli;Giovanna Darvini;Çağrı Akyol
;Francesco Fatone
2021-01-01
Abstract
The first phase of this study aimed to evaluate the environmental impact of combined sewer overflow (CSO) events originated from 35 spillways on the Rio Vallescura catchment (Central Italy) and to understand their contribution to the deterioration of the coastal bathing water quality. A specific analytical campaign was carried out in the sewer system and a dynamic rainfall-runoff simulation model was developed and integrated with a water quality model and further validated. The simulations led to identify the most critical spills in terms of flow rate and selected pollutant loads (i.e. suspended solids, biochemical oxygen demand, chemical oxygen demand, total Kjeldahl nitrogen, Escherichia coli). Specifically, the E. coli release in the water body due to CSO events represented almost 100% of the different pollutant sources considered. In the second phase, the applicability of various disinfection methods was investigated on the CSOs introduced into the catchment. On site physical (UV) and lab-scale chemical (peracetic acid (PAA), performic acid (PFA), ozone) disinfectant agents were tested on microbial indicators including E. coli and intestinal enterococci. PFA and ozone were more effective on the removal of both bacteria (above 3.5 log units) even at low concentration and with short contact time; whereas, PAA showed a moderate removal efficiency (around 2.5 log units) only for E. coli. The highest removal efficiency was achieved in the on-site UV unit and none of the indicator bacteria was detected in the final effluent after the sand filtration and UV treatment. Finally, potential scenarios were developed in comparison to the baseline scenario for the management and treatment of CSOs where a mitigation of E. coli loads from 28% to 73% was achieved on the receiving water body, and a comparative cost assessment of the disinfection methods was provided for in situ treatment of the most critical spillway.File | Dimensione | Formato | |
---|---|---|---|
Crocetti_Catchment-wide-validated_2021.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
7.21 MB
Formato
Adobe PDF
|
7.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Catchment-wide validated assessment of Combined Sewer Overflows (CSOs) in a Mediterranean coastal area and possible disinfection methods to mitigate microbial contami.pdf
accesso aperto
Tipologia:
Documento in pre-print (manoscritto inviato all’editore precedente alla peer review)
Licenza d'uso:
Creative commons
Dimensione
359.44 kB
Formato
Adobe PDF
|
359.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.