We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing and attracting sets that are independent of the realizations of the noise. We study the longtime behavior of the random dynamics in terms of attracting sets, and provide first conditions under which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of the microbial species and provide lower bounds for the biomass concentration, as a relevant information for practitioners. The theoretical results are illustrated with numerical simulations.

Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate / Caraballo, T.; Colucci, R.; Lopez-De-La-Cruz, J.; Rapaport, A.. - In: MATHEMATICAL BIOSCIENCES AND ENGINEERING. - ISSN 1551-0018. - 17:6(2020), pp. 7480-7501. [10.3934/MBE.2020382]

Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate

Colucci R.;
2020-01-01

Abstract

We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing and attracting sets that are independent of the realizations of the noise. We study the longtime behavior of the random dynamics in terms of attracting sets, and provide first conditions under which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of the microbial species and provide lower bounds for the biomass concentration, as a relevant information for practitioners. The theoretical results are illustrated with numerical simulations.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/290147
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact