The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment PANDA will provide direct access to final states containing a ΞΞ pair, for which production cross sections up to μb are expected in ¯pp reactions.With a luminosity of L = 1031 cm−2 s−1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼ 106 events/day. With a nearly 4π detector acceptance, PANDA will thus be a hyperon factory. In this study, reactions of the type ¯pp → Ξ+Ξ∗− as well as ¯pp → Ξ∗+Ξ− with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.
Study of excited Ξ baryons with the PANDA detector
G. Barucca;F. Davi';G. Lancioni;P. Mengucci;L. Montalto;P. P. Natali;N. Paone;D. Rinaldi;L. Scalise;
2021-01-01
Abstract
The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment PANDA will provide direct access to final states containing a ΞΞ pair, for which production cross sections up to μb are expected in ¯pp reactions.With a luminosity of L = 1031 cm−2 s−1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼ 106 events/day. With a nearly 4π detector acceptance, PANDA will thus be a hyperon factory. In this study, reactions of the type ¯pp → Ξ+Ξ∗− as well as ¯pp → Ξ∗+Ξ− with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.