This thesis work is part of the development of innovative wireless communication technologies aimed at the most advanced applications for wireless sensor networks and the Internet of Things. Specifically, we focused on the study of the recent Bluetooth mesh standard in reference to two of its application areas. Regarding the first area, the activity undertaken led to the study, testing and optimization of the Bluetooth mesh protocol on real devices in a scenario of applications of interest in the smart lighting sector. In particular, a detailed analysis was carried out on the limits of its applicability in reference to the reliability of receiving confirmation messages in a Bluetooth mesh network, this being one of the biggest challenges at the moment in the field of lighting. Therefore, an optimized configuration of the Bluetooth mesh network has been proposed that achieves a significant reduction in packet loss. To evaluate the goodness of the proposed technique, a performance comparison was made with the standard configuration using experimental setups with real devices. The results obtained in the tests showed a significant improvement in the reliability of message reception in the proposed optimized scenarios with good compromise between reducing packet loss and computational load. The coexistence of beacon services based on Bluetooth Low Energy technology has also been achieved. Specifically, the integration between an application with beacon functionality based on the Bluetooth Low Energy protocol has been implemented with an application based on the Bluetooth mesh protocol for lighting, previously developed for the creation of the network. Finally, an efficient procedure has been implemented for over-the-air firmware update on devices. The second area addressed can benefit from bluetooth transmission of information, falls within the field of Wireless Body Sensor Networks and is part of the monitoring of biomedical signals in 24-hour wearable devices. In particular, an algorithm has been created to reduce motion artifacts on photoplethytographic signals during intense physical activity by exploiting techniques and signal processing in the time-frequency domain. The proposed algorithm, potentially implementable in wearable devices, allows an accurate estimation of the heart rate and the reconstruction of the photoplethytic signal in the presence of significant movement artifacts on subjects evaluated during walking and running.

Il presente lavoro di tesi si inserisce nell’ambito dello sviluppo di innovative tecnologie di comunicazione wireless rivolte alle più evolute applicazioni per reti di sensori wireless e dell’Internet of Things. Nello specifico, ci si è focalizzati sullo studio del recente standard Bluetooth mesh in riferimento a due suoi ambiti applicativi. Riguardo al primo ambito l’attività intrapresa ha condotto allo studio, test e ottimizzazione del protocollo Bluetooth mesh su dispositivi reali in uno scenario di applicazioni di interesse nel settore smart lighting. In particolare è stata condotta un’analisi dettagliata sui limiti della sua applicabilità in riferimento all’affidabilità della ricezione dei messaggi di conferma in una rete Bluetooth mesh, essendo questa una delle maggiori sfide al momento nel campo del lighting. Pertanto, è stata proposta una configurazione ottimizzata della rete Bluetooth mesh che raggiunge una significativa riduzione della perdita di pacchetti. Per valutare la bontà della tecnica proposta è stato effettuato un confronto delle prestazioni con la configurazione standard utilizzando setup sperimentali con dispositivi reali. I risultati ottenuti nei test hanno mostrato un significativo miglioramento dell’affidabilità della ricezione dei messaggi negli scenari ottimizzati proposti con buon compromesso tra la riduzione della perdita di pacchetti e il carico computazionale. E’ stata inoltre realizzata la coesistenza dei servizi beacon basati sulla tecnologia Bluetooth Low Energy. Nello specifico, è stata implementata l’integrazione tra un applicativo con funzionalità beacon basato sul protocollo Bluetooth Low Energy con un applicativo fondato sul protocollo Bluetooth mesh per il lighting, precedentemente sviluppato per la creazione della rete. Infine, è stata implementata una procedura efficiente per l’aggiornamento over the air del firmware nei dispositivi. Il secondo ambito affrontato può trarre vantaggio dalla trasmissione Bluetooth dell’informazione, rientra nel campo delle Wireless Body Sensor Network e si inquadra nell’ambito del monitoraggio di segnali biomedici in dispositivi indossabili h24. In particolare è stato realizzato un algoritmo per ridurre gli artefatti da movimento su segnali fotopletismografici durante intensa attività fisica sfruttando tecniche ed elaborazioni di signal processing nel dominio tempo-frequenza. L’algoritmo proposto, potenzialmente implementabile in dispositivi indossabili, permette un’accurata stima dell’heart rate e la ricostruzione del segnale fotopletismografico in presenza di significativi artefatti da movimento su soggetti valutati durante il cammino e la corsa.

Studio ed implementazione di WSN per applicazioni IoT basate su Bluetooth mesh

GENTILI, ANDREA
2021-05-26

Abstract

Il presente lavoro di tesi si inserisce nell’ambito dello sviluppo di innovative tecnologie di comunicazione wireless rivolte alle più evolute applicazioni per reti di sensori wireless e dell’Internet of Things. Nello specifico, ci si è focalizzati sullo studio del recente standard Bluetooth mesh in riferimento a due suoi ambiti applicativi. Riguardo al primo ambito l’attività intrapresa ha condotto allo studio, test e ottimizzazione del protocollo Bluetooth mesh su dispositivi reali in uno scenario di applicazioni di interesse nel settore smart lighting. In particolare è stata condotta un’analisi dettagliata sui limiti della sua applicabilità in riferimento all’affidabilità della ricezione dei messaggi di conferma in una rete Bluetooth mesh, essendo questa una delle maggiori sfide al momento nel campo del lighting. Pertanto, è stata proposta una configurazione ottimizzata della rete Bluetooth mesh che raggiunge una significativa riduzione della perdita di pacchetti. Per valutare la bontà della tecnica proposta è stato effettuato un confronto delle prestazioni con la configurazione standard utilizzando setup sperimentali con dispositivi reali. I risultati ottenuti nei test hanno mostrato un significativo miglioramento dell’affidabilità della ricezione dei messaggi negli scenari ottimizzati proposti con buon compromesso tra la riduzione della perdita di pacchetti e il carico computazionale. E’ stata inoltre realizzata la coesistenza dei servizi beacon basati sulla tecnologia Bluetooth Low Energy. Nello specifico, è stata implementata l’integrazione tra un applicativo con funzionalità beacon basato sul protocollo Bluetooth Low Energy con un applicativo fondato sul protocollo Bluetooth mesh per il lighting, precedentemente sviluppato per la creazione della rete. Infine, è stata implementata una procedura efficiente per l’aggiornamento over the air del firmware nei dispositivi. Il secondo ambito affrontato può trarre vantaggio dalla trasmissione Bluetooth dell’informazione, rientra nel campo delle Wireless Body Sensor Network e si inquadra nell’ambito del monitoraggio di segnali biomedici in dispositivi indossabili h24. In particolare è stato realizzato un algoritmo per ridurre gli artefatti da movimento su segnali fotopletismografici durante intensa attività fisica sfruttando tecniche ed elaborazioni di signal processing nel dominio tempo-frequenza. L’algoritmo proposto, potenzialmente implementabile in dispositivi indossabili, permette un’accurata stima dell’heart rate e la ricostruzione del segnale fotopletismografico in presenza di significativi artefatti da movimento su soggetti valutati durante il cammino e la corsa.
This thesis work is part of the development of innovative wireless communication technologies aimed at the most advanced applications for wireless sensor networks and the Internet of Things. Specifically, we focused on the study of the recent Bluetooth mesh standard in reference to two of its application areas. Regarding the first area, the activity undertaken led to the study, testing and optimization of the Bluetooth mesh protocol on real devices in a scenario of applications of interest in the smart lighting sector. In particular, a detailed analysis was carried out on the limits of its applicability in reference to the reliability of receiving confirmation messages in a Bluetooth mesh network, this being one of the biggest challenges at the moment in the field of lighting. Therefore, an optimized configuration of the Bluetooth mesh network has been proposed that achieves a significant reduction in packet loss. To evaluate the goodness of the proposed technique, a performance comparison was made with the standard configuration using experimental setups with real devices. The results obtained in the tests showed a significant improvement in the reliability of message reception in the proposed optimized scenarios with good compromise between reducing packet loss and computational load. The coexistence of beacon services based on Bluetooth Low Energy technology has also been achieved. Specifically, the integration between an application with beacon functionality based on the Bluetooth Low Energy protocol has been implemented with an application based on the Bluetooth mesh protocol for lighting, previously developed for the creation of the network. Finally, an efficient procedure has been implemented for over-the-air firmware update on devices. The second area addressed can benefit from bluetooth transmission of information, falls within the field of Wireless Body Sensor Networks and is part of the monitoring of biomedical signals in 24-hour wearable devices. In particular, an algorithm has been created to reduce motion artifacts on photoplethytographic signals during intense physical activity by exploiting techniques and signal processing in the time-frequency domain. The proposed algorithm, potentially implementable in wearable devices, allows an accurate estimation of the heart rate and the reconstruction of the photoplethytic signal in the presence of significant movement artifacts on subjects evaluated during walking and running.
Bluetooth mesh
PPG
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Andrea_Gentili__rev_pdf_A.pdf

embargo fino al 26/11/2022

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Non definita
Dimensione 24.25 MB
Formato Adobe PDF
24.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/289683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact