This paper presents the results from the experimental application of smartwatch sensors to predict occupants’ thermal comfort under varying environmental conditions. The goal is to investigate the measurement accuracy of smartwatches when used as thermal comfort sensors to be integrated into Heating, Ventilation and Air Conditioning (HVAC) control loops. Ten participants were exposed to various environmental conditions as well as warm - induced and cold-induced discomfort tests and 13 participants were exposed to a transient-condition while a network of sensors and a smartwatch collected both environmental parameters and heart rate variability (HRV). HRV features were used as input to Machine Learning (ML) classification algorithms to establish whether a user was in discomfort, providing an average accuracy of 92.2 %. ML and Deep Learning regression algorithms were trained to predict the thermal sensation vote (TSV) in a transient environment and the results show that the aggregation of environmental and physiological quantities provide a better TSV prediction in terms of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), 1.2 and 20% respectively, than just the HRV features used for the prediction. In conclusion, this experiment supports the assumption that physiological quantities related to thermal comfort can improve TSV prediction when combined with environmental quantities.

Sensing physiological and environmental quantities to measure human thermal comfort through Machine Learning techniques

Morresi N.;Casaccia S.;Sorcinelli M.;Arnesano M.;Revel G. M.
2021

Abstract

This paper presents the results from the experimental application of smartwatch sensors to predict occupants’ thermal comfort under varying environmental conditions. The goal is to investigate the measurement accuracy of smartwatches when used as thermal comfort sensors to be integrated into Heating, Ventilation and Air Conditioning (HVAC) control loops. Ten participants were exposed to various environmental conditions as well as warm - induced and cold-induced discomfort tests and 13 participants were exposed to a transient-condition while a network of sensors and a smartwatch collected both environmental parameters and heart rate variability (HRV). HRV features were used as input to Machine Learning (ML) classification algorithms to establish whether a user was in discomfort, providing an average accuracy of 92.2 %. ML and Deep Learning regression algorithms were trained to predict the thermal sensation vote (TSV) in a transient environment and the results show that the aggregation of environmental and physiological quantities provide a better TSV prediction in terms of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), 1.2 and 20% respectively, than just the HRV features used for the prediction. In conclusion, this experiment supports the assumption that physiological quantities related to thermal comfort can improve TSV prediction when combined with environmental quantities.
File in questo prodotto:
File Dimensione Formato  
2021.IEEEsensors.SensingPhysiologicalEnvironmental.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non definita
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11566/289614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact