The transformation from traditional industry to Industry 4.0 can bring many benefits in various spheres, from efficiency to safety. However, this transition involves adopting technologically advanced machinery with a high level of digitization and communication. The costs and time to replace obsolete machines could be unsustainable for many companies while retrofitting the old machinery. To make them ready to the Industry 4.0 context, they may represent an alternative to the replacement. Even if there are many studies related to retrofitting applied to machinery, there are very few studies related to the literature process industry sector. In this work, we propose a case study of a two-phase mixing plant that needed to be enhanced in the safety and maintainability conditions with reasonable times and costs. In this regard, the Digital Twin techniques and Deep Learning algorithms will be tested to predict and detect future faults, not only already visible and existing malfunctions. This approach strength is that, with limited investments and reasonable times, it allows the transformation of an old plant into a smart plant capable of communicating quickly with operators to increase its safety and maintainability.

Retrofitting a process plant in an industry 4.0 perspective for improving safety and maintenance performance / Di Carlo, F.; Mazzuto, G.; Bevilacqua, M.; Ciarapica, F. E.. - In: SUSTAINABILITY. - ISSN 2071-1050. - ELETTRONICO. - 13:2(2021). [10.3390/su13020646]

Retrofitting a process plant in an industry 4.0 perspective for improving safety and maintenance performance

Di Carlo F.
Primo
Data Curation
;
Mazzuto G.
Secondo
Methodology
;
Bevilacqua M.
Penultimo
Supervision
;
Ciarapica F. E.
Ultimo
Validation
2021-01-01

Abstract

The transformation from traditional industry to Industry 4.0 can bring many benefits in various spheres, from efficiency to safety. However, this transition involves adopting technologically advanced machinery with a high level of digitization and communication. The costs and time to replace obsolete machines could be unsustainable for many companies while retrofitting the old machinery. To make them ready to the Industry 4.0 context, they may represent an alternative to the replacement. Even if there are many studies related to retrofitting applied to machinery, there are very few studies related to the literature process industry sector. In this work, we propose a case study of a two-phase mixing plant that needed to be enhanced in the safety and maintainability conditions with reasonable times and costs. In this regard, the Digital Twin techniques and Deep Learning algorithms will be tested to predict and detect future faults, not only already visible and existing malfunctions. This approach strength is that, with limited investments and reasonable times, it allows the transformation of an old plant into a smart plant capable of communicating quickly with operators to increase its safety and maintainability.
2021
File in questo prodotto:
File Dimensione Formato  
Retrofitting a Process Plant in an Industry 4.0.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Creative commons
Dimensione 5.5 MB
Formato Adobe PDF
5.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/289513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 21
social impact