The thesis describes the results of the research and development of new technologies based on artificial intelligence techniques, able to achieve an empathic interaction and an emotional connection between man and "the machines" in order to improve comfort and safety on board of yachts. This interaction is achieved through the recognition of emotions and behaviors and the following activation of all those multimedia devices available in the environment on board, which are adapted to the mood of the subject inside the room. The prototype system developed during the three years of PhD is now able to manage multimedia content (e.g. music tracks, videos played on LED screens) and light scenarios, based on the user's emotion, recognized by facial expressions taken from any camera installed inside the space. In order to make the interaction adaptive, the developed system implements Deep Learning algorithms to recognize the identity of the users on board (Facial Recognition), the degree of attention of the commander (Gaze Detection and Drowsiness) and the objects with which he interacts (phone, earphones, etc.). This information is processed within the system to identify any situations of risk to the safety of people on board and to monitor the entire environment. The application of these technologies, in this domain that is always open to the introduction of the latest innovations on board, opens up several research challenges.
La tesi descrive i risultati dell’attività di ricerca e sviluppo di nuove tecnologie basate su tecniche di intelligenza artificiale, capaci di raggiungere un’interazione empatica e una connessione emotiva tra l’uomo e “le macchine” così da migliorare il comfort e la sicurezza a bordo di uno yacht. Tale interazione è ottenuta grazie al riconoscimento di emozioni e comportamenti e alla successiva attivazione di tutti quegli apparati multimediali presenti nell’ambiente a bordo, che si adattano al mood del soggetto all’interno della stanza. Il sistema prototipale sviluppato durante i tre anni di dottorato è oggi in grado di gestire i contenuti multimediali (ad es. brani musicali, video riprodotti nei LED screen) e scenari di luce, basati sull'emozione dell'utente, riconosciute dalle espressioni facciali riprese da una qualsiasi fotocamera installata all’interno dello spazio. Per poter rendere l’interazione adattativa, il sistema sviluppato implementa algoritmi di Deep Learning per riconoscere l’identità degli utenti a bordo (riconoscimento facciale), il grado di attenzione del comandante (Gaze Detection e Drowsiness) e gli oggetti con cui egli interagisce (telefono, auricolari, ecc.). Tali informazioni vengono processate all’interno del sistema per identificare eventuali situazioni di rischio per la sicurezza delle persone presenti a bordo e per controllare l’intero ambiente. L’applicazione di queste tecnologie, in questo settore sempre aperto all’introduzione delle ultime innovazioni a bordo, apre a diverse sfide di ricerca.
Yacht experience, ricerca e sviluppo di soluzioni basate su intelligenza artificiale per il comfort e la sicurezza in alto mare / Altieri, Alex. - (2021 Mar 25).
Yacht experience, ricerca e sviluppo di soluzioni basate su intelligenza artificiale per il comfort e la sicurezza in alto mare.
ALTIERI, ALEX
2021-03-25
Abstract
The thesis describes the results of the research and development of new technologies based on artificial intelligence techniques, able to achieve an empathic interaction and an emotional connection between man and "the machines" in order to improve comfort and safety on board of yachts. This interaction is achieved through the recognition of emotions and behaviors and the following activation of all those multimedia devices available in the environment on board, which are adapted to the mood of the subject inside the room. The prototype system developed during the three years of PhD is now able to manage multimedia content (e.g. music tracks, videos played on LED screens) and light scenarios, based on the user's emotion, recognized by facial expressions taken from any camera installed inside the space. In order to make the interaction adaptive, the developed system implements Deep Learning algorithms to recognize the identity of the users on board (Facial Recognition), the degree of attention of the commander (Gaze Detection and Drowsiness) and the objects with which he interacts (phone, earphones, etc.). This information is processed within the system to identify any situations of risk to the safety of people on board and to monitor the entire environment. The application of these technologies, in this domain that is always open to the introduction of the latest innovations on board, opens up several research challenges.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Altieri.pdf
Open Access dal 14/09/2022
Descrizione: Tesi_Altieri
Tipologia:
Tesi di dottorato
Licenza d'uso:
Creative commons
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.