Evidence demonstrates the importance of lipid metabolism and signaling in cancer cell biology. De novo lipogenesis is an important source of lipids for cancer cells, but exogenous lipid uptake remains essential for many cancer cells. Dietary lipids can modify lipids present in tumor microenvironment affecting cancer cell metabolism. Clinical trials have shown that diets rich in polyunsaturated fatty acids (PUFA) can negatively affect tumor growth. However, certain n-6 PUFAs can also contribute to cancer progression. Identifying the molecular mechanisms through which lipids affect cancer progression will provide an opportunity for focused dietary interventions that could translate into the development of personalized diets for cancer control. However, the effective mechanisms of action of PUFAs have not been fully clarified yet. Mitochondria controls ATP generation, redox homeostasis, metabolic signaling, apoptotic pathways and many aspects of autophagy, and it has been recognized to play a key role in cancer. The purpose of this review is to summarize the current evidence linking dietary lipids effects on mitochondrial aspects with consequences for cancer progression and the molecular mechanisms that underlie this association.

The central role of mitochondria in the relationship between dietary lipids and cancer progression / Varela-Lopez, A.; Vera-Ramirez, L.; Giampieri, F.; Navarro-Hortal, M. D.; Forbes-Hernandez, T. Y.; Battino, M.; Quiles, J. L.. - In: SEMINARS IN CANCER BIOLOGY. - ISSN 1044-579X. - ELETTRONICO. - (2021). [10.1016/j.semcancer.2021.01.001]

The central role of mitochondria in the relationship between dietary lipids and cancer progression

Giampieri F.
Conceptualization
;
Battino M.
Supervision
;
2021-01-01

Abstract

Evidence demonstrates the importance of lipid metabolism and signaling in cancer cell biology. De novo lipogenesis is an important source of lipids for cancer cells, but exogenous lipid uptake remains essential for many cancer cells. Dietary lipids can modify lipids present in tumor microenvironment affecting cancer cell metabolism. Clinical trials have shown that diets rich in polyunsaturated fatty acids (PUFA) can negatively affect tumor growth. However, certain n-6 PUFAs can also contribute to cancer progression. Identifying the molecular mechanisms through which lipids affect cancer progression will provide an opportunity for focused dietary interventions that could translate into the development of personalized diets for cancer control. However, the effective mechanisms of action of PUFAs have not been fully clarified yet. Mitochondria controls ATP generation, redox homeostasis, metabolic signaling, apoptotic pathways and many aspects of autophagy, and it has been recognized to play a key role in cancer. The purpose of this review is to summarize the current evidence linking dietary lipids effects on mitochondrial aspects with consequences for cancer progression and the molecular mechanisms that underlie this association.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/286971
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact