The cold recycling of reclaimed asphalt (RA) for the rehabilitation of end-of-life pavements is becoming very common. Cold recycled asphalt mixtures (CRAMs) are characterised by a curing time, required to reach the material design mechanical performance. Since the laboratory simulation of the long-term field curing is not yet a standardised procedure, a CRAM was laid as binder course in a full-scale trial section that was monitored for more than two years. The comparison between field curing and oven-curing in laboratory at 40◦C was performed by carrying out indirect tensile stiffness modulus (ITSM), indirect tensile strength (ITS) and complex modulus tests, as well as measurements of the air voids content. The evolution of the ITSM as a function of the curing time (field/oven-curing) was obtained for both gyratory specimens and cores taken from the trial section at different time periods. Results showed that the material stiffness development can be accelerated with a small effect on its long-term value if oven-curing is applied a few days/weeks after compaction. A linear relationship was found between the ITS measured on the cores and their air voids content. Finally, the complex modulus tests confirmed that CRAMs provide an intermediate behaviour between asphalt concrete mixtures and cement-bound mixtures.

Comparing the field and laboratory curing behaviour of cold recycled asphalt mixtures for binder courses / Ferrotti, G.; Grilli, A.; Mignini, C.; Graziani, A.. - In: MATERIALS. - ISSN 1996-1944. - STAMPA. - 13:21(2020), pp. 1-19. [10.3390/ma13214697]

Comparing the field and laboratory curing behaviour of cold recycled asphalt mixtures for binder courses

Ferrotti G.
Primo
Writing – Original Draft Preparation
;
Grilli A.
Membro del Collaboration Group
;
Mignini C.
Penultimo
Investigation
;
Graziani A.
Ultimo
Writing – Review & Editing
2020-01-01

Abstract

The cold recycling of reclaimed asphalt (RA) for the rehabilitation of end-of-life pavements is becoming very common. Cold recycled asphalt mixtures (CRAMs) are characterised by a curing time, required to reach the material design mechanical performance. Since the laboratory simulation of the long-term field curing is not yet a standardised procedure, a CRAM was laid as binder course in a full-scale trial section that was monitored for more than two years. The comparison between field curing and oven-curing in laboratory at 40◦C was performed by carrying out indirect tensile stiffness modulus (ITSM), indirect tensile strength (ITS) and complex modulus tests, as well as measurements of the air voids content. The evolution of the ITSM as a function of the curing time (field/oven-curing) was obtained for both gyratory specimens and cores taken from the trial section at different time periods. Results showed that the material stiffness development can be accelerated with a small effect on its long-term value if oven-curing is applied a few days/weeks after compaction. A linear relationship was found between the ITS measured on the cores and their air voids content. Finally, the complex modulus tests confirmed that CRAMs provide an intermediate behaviour between asphalt concrete mixtures and cement-bound mixtures.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/286852
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact