Agricultural landscapes are often affected by groundwater quality issues due to fertilizers leaching. To address this worldwide problem several agricultural best practices have been proposed, like limiting the amount of fertilizers and increasing soil organic matter content. To evaluate if these practices may promote groundwater quality enhancement, vadose zone retention time and complex biogeochemical processes must be known in detail. In this study, sequential undisturbed column experiments were performed to determine the amount of nutrients and heavy metals leached after simulated stormwater events. The column was amended with urea then flushed for two pore volumes, then straw residuals were incorporated and flushed for two pore volumes and finally compost was incorporated and flushed for six pore volumes. Dissolved ions, major gasses and heavy metals were determined in leachate samples. Nitrate and nitrite were leached in the urea treatment producing the highest concentrations, followed by compost and straw residuals. The redox conditions were aerobic in all treatments and pH was circumneutral or slightly basic. Denitrification was low but increased with the addition of straw residuals and compost. Heavy metals were all at very low concentrations except for lead and cadmium, which slightly exceeded threshold limits (10 and 1 μg/L, respectively) in all the treatments. The compost treatment, after three pore volumes, was affected by clay swelling due to sodium dispersion, which in turn provoked a reduction of porosity and hydraulic conductivity.

Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil / Colombani, N.; Gervasio, M. P.; Castaldelli, G.; Mastrocicco, M.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - ELETTRONICO. - 733:(2020), p. 139342. [10.1016/j.scitotenv.2020.139342]

Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil

Colombani N.
Primo
Conceptualization
;
Gervasio M. P.
Secondo
Formal Analysis
;
2020-01-01

Abstract

Agricultural landscapes are often affected by groundwater quality issues due to fertilizers leaching. To address this worldwide problem several agricultural best practices have been proposed, like limiting the amount of fertilizers and increasing soil organic matter content. To evaluate if these practices may promote groundwater quality enhancement, vadose zone retention time and complex biogeochemical processes must be known in detail. In this study, sequential undisturbed column experiments were performed to determine the amount of nutrients and heavy metals leached after simulated stormwater events. The column was amended with urea then flushed for two pore volumes, then straw residuals were incorporated and flushed for two pore volumes and finally compost was incorporated and flushed for six pore volumes. Dissolved ions, major gasses and heavy metals were determined in leachate samples. Nitrate and nitrite were leached in the urea treatment producing the highest concentrations, followed by compost and straw residuals. The redox conditions were aerobic in all treatments and pH was circumneutral or slightly basic. Denitrification was low but increased with the addition of straw residuals and compost. Heavy metals were all at very low concentrations except for lead and cadmium, which slightly exceeded threshold limits (10 and 1 μg/L, respectively) in all the treatments. The compost treatment, after three pore volumes, was affected by clay swelling due to sodium dispersion, which in turn provoked a reduction of porosity and hydraulic conductivity.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/286822
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact