Impaired mitochondrial function concomitant to enhanced oxidative stress-induced damage are well established mechanisms involved in hyperlipidemia-induced cardiotoxicity. Currently, limited information is available on the direct effect of myocardial lipid overload on endogenous coenzyme Q9/10 (CoQ9/10) levels in association with mitochondrial respiration and oxidative stress status. Here, such effects were explored by exposing H9c2 cardiomyocytes to various doses (0.15 to 1 mM) of palmitate for 24 h. The results demonstrated that palmitate doses ≥0.25 mM are enough to impair mitochondrial respiration and cause oxidative stress. Although endogenous CoQ9/10 levels are enhanced by palmitate doses ≤0.5 mM, this is not enough to counteract oxidative stress, but is sufficient to maintain cell viability of cardiomyocytes. Palmitate doses >0.5 mM caused severe mitochondrial toxicity, including reduction of cell viability. Interestingly, enhancement of CoQ9/10 levels with the lowest dose of palmitate (0.15 mM) was accompanied by a significantly reduction of CoQ9 oxidation status, as well as low cytosolic production of reactive oxygen species. From the overall findings, it appears that CoQ9/10 response may be crucial to improve mitochondrial function in conditions linked to hyperlipidemia-induced insult. Confirmation of such findings in relevant in vivo models remains essential to better understand the cardioprotective effects in association with improving endogenous CoQ9/10 content.

Palmitate-induced toxicity is associated with impaired mitochondrial respiration and accelerated oxidative stress in cultured cardiomyocytes: The critical role of coenzyme Q9/10 / Dludla, P. V.; Silvestri, S.; Orlando, P.; Mazibuko-Mbeje, S. E.; Johnson, R.; Marcheggiani, F.; Cirilli, I.; Muller, C. J. F.; Louw, J.; Chellan, N.; Obonye, N.; Nkambule, B. B.; Tiano, L.. - In: TOXICOLOGY IN VITRO. - ISSN 0887-2333. - 68:(2020), p. 104948. [10.1016/j.tiv.2020.104948]

Palmitate-induced toxicity is associated with impaired mitochondrial respiration and accelerated oxidative stress in cultured cardiomyocytes: The critical role of coenzyme Q9/10

Silvestri S.;Orlando P.;Marcheggiani F.;Cirilli I.;Tiano L.
2020-01-01

Abstract

Impaired mitochondrial function concomitant to enhanced oxidative stress-induced damage are well established mechanisms involved in hyperlipidemia-induced cardiotoxicity. Currently, limited information is available on the direct effect of myocardial lipid overload on endogenous coenzyme Q9/10 (CoQ9/10) levels in association with mitochondrial respiration and oxidative stress status. Here, such effects were explored by exposing H9c2 cardiomyocytes to various doses (0.15 to 1 mM) of palmitate for 24 h. The results demonstrated that palmitate doses ≥0.25 mM are enough to impair mitochondrial respiration and cause oxidative stress. Although endogenous CoQ9/10 levels are enhanced by palmitate doses ≤0.5 mM, this is not enough to counteract oxidative stress, but is sufficient to maintain cell viability of cardiomyocytes. Palmitate doses >0.5 mM caused severe mitochondrial toxicity, including reduction of cell viability. Interestingly, enhancement of CoQ9/10 levels with the lowest dose of palmitate (0.15 mM) was accompanied by a significantly reduction of CoQ9 oxidation status, as well as low cytosolic production of reactive oxygen species. From the overall findings, it appears that CoQ9/10 response may be crucial to improve mitochondrial function in conditions linked to hyperlipidemia-induced insult. Confirmation of such findings in relevant in vivo models remains essential to better understand the cardioprotective effects in association with improving endogenous CoQ9/10 content.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/285714
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact