Prostate cancer is the most common cancer and second leading cause of cancer-related death in American men. Antiandrogen therapies are part of the standard of therapeutic regimen for advanced or metastatic prostate cancers; however, patients who receive these treatments are more likely to develop castration-resistant prostate cancer (CRPC) or neuroendocrine prostate cancer (NEPC). In the development of CRPC or NEPC, numerous genetic signaling pathways have been under preclinical investigations and in clinical trials. Accumulated evidence shows that DNA methylation, chromatin integrity, and accessibility for transcriptional regulation still play key roles in prostate cancer initiation and progression. Better understanding of how epigenetic change regulates the progression of prostate cancer and the interaction between epigenetic and genetic modulators driving NEPC may help develop a better risk stratification and more effective treatment regimens for prostate cancer patients.
Epigenetic modulations and lineage plasticity in advanced prostate cancer / Ge, R.; Wang, Z.; Montironi, R.; Jiang, Z.; Cheng, M.; Santoni, M.; Huang, K.; Massari, F.; Lu, X.; Cimadamore, A.; Lopez-Beltran, A.; Cheng, L.. - In: ANNALS OF ONCOLOGY. - ISSN 0923-7534. - 31:4(2020), pp. 470-479. [10.1016/j.annonc.2020.02.002]
Epigenetic modulations and lineage plasticity in advanced prostate cancer
Montironi R.;Santoni M.;Cimadamore A.;
2020-01-01
Abstract
Prostate cancer is the most common cancer and second leading cause of cancer-related death in American men. Antiandrogen therapies are part of the standard of therapeutic regimen for advanced or metastatic prostate cancers; however, patients who receive these treatments are more likely to develop castration-resistant prostate cancer (CRPC) or neuroendocrine prostate cancer (NEPC). In the development of CRPC or NEPC, numerous genetic signaling pathways have been under preclinical investigations and in clinical trials. Accumulated evidence shows that DNA methylation, chromatin integrity, and accessibility for transcriptional regulation still play key roles in prostate cancer initiation and progression. Better understanding of how epigenetic change regulates the progression of prostate cancer and the interaction between epigenetic and genetic modulators driving NEPC may help develop a better risk stratification and more effective treatment regimens for prostate cancer patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.