Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let S̃(z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for S̃(z) and the Cesàro average of rG(n).
Some Identities Involving the Cesàro Average of the Goldbach Numbers / Cantarini, M.. - In: MATHEMATICAL NOTES. - ISSN 1573-8876. - 106:5-6(2019), pp. 688-702. [10.1134/S0001434619110038]
Some Identities Involving the Cesàro Average of the Goldbach Numbers
Cantarini M.
2019-01-01
Abstract
Let Λ(n) be the von Mangoldt function, and let rG(n):= ∑m1+m2=n Λ (m1)Λ(m2) be the weighted sum for the number of Goldbach representations which also includes powers of primes. Let S̃(z): = ∑n≥1 Λ (n)e-nz, where Λ (n) is the Von Mangoldt function, with z ∈ ℂ, Re (z) > 0. In this paper, we prove an explicit formula for S̃(z) and the Cesàro average of rG(n).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.