We deal with the following nonlinear problem involving fractional p&q Laplacians: (−∆)spu + (−∆)squ + |u|p−2u + |u|q−2u = λh(x)f(u) + |u|qs∗−2u in RN, where s ∈ (0, 1), 1 < p < q < Ns , qs∗ = NNq−sq, λ > 0 is a parameter, h is a nontrivial bounded perturbation and f is a superlinear continuous function with subcritical growth. Using suitable variational arguments and concentration-compactness lemma, we prove the existence of a nontrivial non-negative solution for λ sufficiently large.
Titolo: | Fractional p&q Laplacian problems in RN with critical growth |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Abstract: | We deal with the following nonlinear problem involving fractional p&q Laplacians: (−∆)spu + (−∆)squ + |u|p−2u + |u|q−2u = λh(x)f(u) + |u|qs∗−2u in RN, where s ∈ (0, 1), 1 < p < q < Ns , qs∗ = NNq−sq, λ > 0 is a parameter, h is a nontrivial bounded perturbation and f is a superlinear continuous function with subcritical growth. Using suitable variational arguments and concentration-compactness lemma, we prove the existence of a nontrivial non-negative solution for λ sufficiently large. |
Handle: | http://hdl.handle.net/11566/284888 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.