We study the existence and concentration of positive solutions for the following class of fractional p-Kirchhoff type problems: 0 & where is a small positive parameter, a and b are positive constants, s (0, 1) and p (1, ∞) are such that, is the fractional p-Laplacian operator, f: → is a superlinear continuous function with subcritical growth and V: R3 → is a continuous potential having a local minimum. We also prove a multiplicity result and relate the number of positive solutions with the topology of the set where the potential V attains its minimum values. Finally, we obtain an existence result when f(u) = uq-1 + γur-1, where γ > 0 is sufficiently small, and the powers q and r satisfy 2p < q < ps≥ r. The main results are obtained by using some appropriate variational arguments
Concentration of positive solutions for a class of fractional p-Kirchhoff type equations / Ambrosio, V.; Isernia, T.; Radulescu, V. D.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 151:2(2021), pp. 601-651. [10.1017/prm.2020.32]
Concentration of positive solutions for a class of fractional p-Kirchhoff type equations
Ambrosio V.
;Isernia T.;
2021-01-01
Abstract
We study the existence and concentration of positive solutions for the following class of fractional p-Kirchhoff type problems: 0 & where is a small positive parameter, a and b are positive constants, s (0, 1) and p (1, ∞) are such that, is the fractional p-Laplacian operator, f: → is a superlinear continuous function with subcritical growth and V: R3 → is a continuous potential having a local minimum. We also prove a multiplicity result and relate the number of positive solutions with the topology of the set where the potential V attains its minimum values. Finally, we obtain an existence result when f(u) = uq-1 + γur-1, where γ > 0 is sufficiently small, and the powers q and r satisfy 2p < q < ps≥ r. The main results are obtained by using some appropriate variational argumentsFile | Dimensione | Formato | |
---|---|---|---|
Isernia_PROCA_AIR.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso:
Tutti i diritti riservati
Dimensione
572.1 kB
Formato
Adobe PDF
|
572.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ambrosio-Isernia-Radulescu.pdf
Open Access dal 05/11/2020
Tipologia:
Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso:
Creative commons
Dimensione
654.96 kB
Formato
Adobe PDF
|
654.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.