The Industry 4.0 paradigm is based on transparency and co-operation and, hence, on monitoring and pervasive data collection. In highly standardized contexts, it is usually easy to gather data using available technologies, while, in complex environments, only very advanced and customizable technologies, such as Computer Vision, are intelligent enough to perform such monitoring tasks well. By the term “complex environment”, we especially refer to those contexts where human activity which cannot be fully standardized prevails. In this work, we present a Machine Vision algorithm which is able to effectively deal with human interactions inside a framed area. By exploiting inter-frame analysis, image pre-processing, binarization, morphological operations, and blob detection, our solution is able to count the pieces assembled by an operator using a real-time video input. The solution is compared with a more advanced Machine Learning-based custom object detector, which is taken as reference. The proposed solution demonstrates a very good performance in terms of Sensitivity, Specificity, and Accuracy when tested on a real situation in an Italian manufacturing firm. The value of our solution, compared with the reference object detector, is that it requires no training and is therefore extremely flexible, requiring only minor changes to the working parameters to translate to other objects, making it appropriate for plant-wide implementation.

A versatile machine vision algorithm for real-time counting manually assembled pieces / Pierleoni, P.; Belli, A.; Palma, L.; Sabbatini, L.. - In: JOURNAL OF IMAGING. - ISSN 2313-433X. - ELETTRONICO. - 6:6(2020), p. 48. [10.3390/JIMAGING6060048]

A versatile machine vision algorithm for real-time counting manually assembled pieces

Pierleoni P.;Belli A.;Palma L.;Sabbatini L.
2020-01-01

Abstract

The Industry 4.0 paradigm is based on transparency and co-operation and, hence, on monitoring and pervasive data collection. In highly standardized contexts, it is usually easy to gather data using available technologies, while, in complex environments, only very advanced and customizable technologies, such as Computer Vision, are intelligent enough to perform such monitoring tasks well. By the term “complex environment”, we especially refer to those contexts where human activity which cannot be fully standardized prevails. In this work, we present a Machine Vision algorithm which is able to effectively deal with human interactions inside a framed area. By exploiting inter-frame analysis, image pre-processing, binarization, morphological operations, and blob detection, our solution is able to count the pieces assembled by an operator using a real-time video input. The solution is compared with a more advanced Machine Learning-based custom object detector, which is taken as reference. The proposed solution demonstrates a very good performance in terms of Sensitivity, Specificity, and Accuracy when tested on a real situation in an Italian manufacturing firm. The value of our solution, compared with the reference object detector, is that it requires no training and is therefore extremely flexible, requiring only minor changes to the working parameters to translate to other objects, making it appropriate for plant-wide implementation.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284877
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact