In this paper we deal with the following fractional p&q-Laplacian problem: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, where s∈(0,1), ε>0 is a small parameter, [Formula presented], (−Δ)ts, with t∈{p,q}, is the fractional (s,t)-Laplacian operator, V:RN→R is a continuous function satisfying the global Rabinowitz condition, and f:R→R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik-Schnirelmann category theory, we prove that the above problem admits multiple solutions for ε>0 small enough.

Multiplicity of positive solutions for a fractional p&q-Laplacian problem in RN / Ambrosio, V.; Isernia, T.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 501:1(2021). [10.1016/j.jmaa.2020.124487]

Multiplicity of positive solutions for a fractional p&q-Laplacian problem in RN

Ambrosio V.
;
Isernia T.
2021-01-01

Abstract

In this paper we deal with the following fractional p&q-Laplacian problem: {(−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, where s∈(0,1), ε>0 is a small parameter, [Formula presented], (−Δ)ts, with t∈{p,q}, is the fractional (s,t)-Laplacian operator, V:RN→R is a continuous function satisfying the global Rabinowitz condition, and f:R→R is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik-Schnirelmann category theory, we prove that the above problem admits multiple solutions for ε>0 small enough.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X20306491-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza d'uso: Tutti i diritti riservati
Dimensione 575.52 kB
Formato Adobe PDF
575.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ambrosio Isernia - JMAA3.pdf

accesso aperto

Tipologia: Documento in post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza d'uso: Creative commons
Dimensione 545.22 kB
Formato Adobe PDF
545.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact